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ABSTRACT

Bridging the gap between low-level features and semantics is
a problem commonly acknowledged in the Multimedia com-
munity. Event modeling can fill the gap. In this paper we
present the Simple Event Model (SEM) and its application
in a Maritime Safety and Security use case about Situa-
tional Awareness. We show how we abstract over low-level
features, recognize simple behavior events using a Piecewise
Linear Segmentation algorithm, and model the events as
instances of SEM. We apply deduction rules, spatial prox-
imity reasoning, and semantic web reasoning in SWI-Prolog
to derive abstract events from the recognized simple events.
The use case described in this paper come from the Dutch
Poseidon project.

Categories and Subject Descriptors

E.0.e [General]: Knowledge and data engineering tools and
techniques; I.2.1 [Artificial Intelligence]: Applications and
Expert Knowledge-Intensive Systems; I.2.3.f [Artificial In-
telligence]: Deduction and Theorem Proving and Knowl-
edge Processing—Logic Programming ; I.2.6.f [Artificial In-
telligence]: Learning—Knowledge acquisition

General Terms

Event modeling, Piecewise linear segmentation, Prolog, Se-
mantic web, Maritime safery and security, Situational aware-
ness

1. INTRODUCTION
The notion of “bridging the gap” [13] is well known in the

Multimedia field: the missing chain link between low-level
data (e.g. features extracted from a video, or in the case
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of this paper, ship movement) and semantics. Event model-
ing can fill the gap. We show how the Simple Event Model
(SEM) can be used as a semantic layer over abstractions de-
rived from domain-level raw data. SEM was created to have
a shared representation of event-based information amongst
projects from various domains, like Maritime Safety and Se-
curity on one end of the spectrum and Museum collection
federation on the other. Having a shared model makes it
possible to share information systems like ClioPatria [16]. In
this paper we choose Marine Automatic Identification Sys-
tem (AIS)1 messages as domain-level data. AIS messages
are sent by ships to receivers at a regular interval to post
the ship’s navigational parameters. We describe a method
to recognize meaningful events in this ship behavior data,
and to model them as instances of SEM. We write rules in
SWI-Prolog [17] that define the semantics of these events,
and integrate them with GeoNames2 concepts. We use the
rules to classify the behavior of ships and derive new events,
like ferry trips.

We present related work in section 2, before introducing
SEM itself in section 3. We continue with the description of
our use case: the automatic generation of SEM Events from
AIS messages for Situational Awareness in section 4. We
conclude and discuss future work in section 5.

2. RELATED WORK
Different models have been proposed to bridge the gap

between domain-level features and the semantic level. For
example, the E event model [15] models events as n-ary re-
lations, like SEM does, and as abstractions over concrete
data and domain-level features. There is some overlap be-
tween SEM’s five basic classes and E’s Constituents. SEM
has five explicit classes, while in E these are all Constituents
with an Aspect. E uses an internal typing system (the id

attribute), while SEM has an explicit external Type class.
This external typing system is the main reason why existing
event models were insufficient for the use cases that SEM
was created for. Part of the MPEG-7 [6] Multimedia De-
scription Scheme also combines the modeling of domain-level
features and semantics. However, it is complex and linking
the low-level to semantics via MPEG-7 itself is hardly ever

1http://en.wikipedia.org/wiki/Automatic_
Identification_System
2http://www.geonames.org/



done. The usual approach is to combine MPEG-7 with an
ontology [4, 14]. COMM [1] allows combination of descrip-
tions fromMPEG-7 with a semantic description based on the
DOLCE [7] and its extension, the Description and Situation
pattern. COMM leaves the choice of the semantic descrip-
tion model to the user. It provides a place holder for seman-
tic descriptions that can be filled by either a single item or
a complex description, for example, using the Event Ontol-
ogy [10]. SEM proposes an extension to this ontology with
additional Role and (external) Type classes. This last point
is where SEM differs from other “class-based” Event models
(cf. [10] and [2]): models that describe events with classes
and properties. These models can be extended by creating
subclasses. In SEM, we allow (and encourage!) the use of
external type definitions, from third-party vocabularies as
Types for our core classes, instead of this subclassing mech-
anism. This third solution stands inbetween “class-based”
and “property-based” event models, like the model behind
the CultureSampo portal [12]. Ruotsalo et al. model events
with properties between classes from external vocabularies,
mapped to a common upper level ontology, but do not define
event classes as such.

3. SEM: SIMPLE EVENT MODEL
The purpose of SEM is to provide the minimal set of

classes to describe events, but with two specific require-
ments: the possibility to associate roles and (possibly ex-
ternal) types to these classes. We chose to have as few
constrains as possible for the sake of compatibility with (1)
different, possibly more constrained, event models or ontolo-
gies and (2) with fuzzy real world data, where the semantics
is not as well defined as in formal models.

SEM has five core classes: Event, Actor, Object, Place
and Role. We modeled the core entities as Classes, which
are related together with the properties shown in figure 1.
What is not displayed on the figure is the fact that all five
core Classes can have a Role, not only the Actor. These
Classes are sub-classes of TimeStampedEntity: their exis-
tence can be bounded in time, but this temporal definition
is not mandatory. Another important part of SEM is the dif-
ferent Types corresponding to the core Classes: EventType,
ActorType, ObjectType, PlaceType and RoleType. We also
modeled them as Classes. Types are not time-stamped: they
are generic notions which instances are mobilized in the con-
text of an event description. The instances of the Type
classes can be taken from third-party ontologies and can be
either instances or classes in those ontologies. In the follow-
ing paragraphs we present the five core classes, SEM’s Type
system and the way we model time: as a datatype.

Event.
The Event is the class meant to describe “what” is hap-

pening: being anchored, for example. Events are related to
Actors via the generic property hasParticipant or its inverse
property participatesIn: a further specification of how an
Actor is participating in an Event is made via the specifi-
cation of the Actor’s Role (see Role below). An Object is
involvedIn an Event if it is not an active participant; things
(even physical objects like a ship) are Actors if they are
directly participating in the Event. The kind of an Event
(standing still) can be denoted with an instance of an Event-
Type. Modeling via EventType (see the Type system para-
graph) is recommended but is not enforced in SEM. Event-

Type instances can be borrowed from external vocabular-
ies. Events can be time-stamped with the timeStampedAt
datatype property and associated to a Place with the inPlace
property. See the following Time and Place paragraphs for
a more elaborate description.

Events correspond to entities defined primarily via their
temporal aspect, like the Perdurants/Occurents of DOLCE
[7], the Process class of SUMO [9] and the Situation of CYC
[8]. Dublin Core defines an Event class only in the DCMI
Type category, as a recommended value for a document’s
genre. No further constrain is given. In the CultureSampo
[12] knowledge representation, the Event class itself is not
defined within their model: they capture the relations be-
tween an Event form an external vocabulary to other compo-
nents of the event, like the agent, time, place. As mentioned
above, in SEM, an external vocabulary describing the Event
is linked via the EventType. The Event Ontology3 defines
an Event class, which can have other Events as parts: we
created the same “part-of” property, but in our case it can
be applied to any of our classes. We followed the Event
Ontolgoy by not restricting this class. In this way, we stay
as broad in scope and as generic as possible. If constrains
are necessary for give use cases, they can be added as lo-
cal extensions. The same goes for the mapping to a higher
level ontology: we provide links to concpets from some up-
per ontologies but do not enforce any particular high level
semantic choice in SEM.

Actor.
The Actor is the class meant to describe “who” is doing

something (and on whom it is happening): a ship, for exam-
ple. Actors are related to Events via the generic property
participatesIn: a further specification of how an Actor is
participating in an Event is made via the specification of
the Actor’s Role (see Role below). The kind of an Actor
(tanker, passenger vessel) can be denoted with an instance
of an ActorType, which can be borrowed from external vo-
cabularies. Actors can be time-stamped with the timeS-
tampedAt datatype property and associated to a Place with
the inPlace property.

Actor corresponds to a class of entities defined primar-
ily through their spatial dimension4, like the Endurants /
Continuants from DOLCE [7]. This class corresponds to
Agent in SUMO [9] and Agent-Generic or SomethingExist-
ing in CYC [8], as basically anything that is not an event
can be an Actor. Dublin Core has the two classes Agent
and AgentClass in the dcterms vocabulary to specify Actors
from an Event. In the model of the CultureSampo Portal,
three properties correspond to the link between our Event
and Actor classes: the generic participant, agent and patient.
In SEM we have only the generic property; the fact that an
Actor is participating in an Event as an agent, patient or
any other variation is modeled via the Role and RoleType
classes (see below). In the Event Ontology, the suggested
value corresponding to our Actor class is the Agent class
from the FOAF vocabulary5, which also corresponds to our
view: a “person, group, software or physical artifact”.

3http://motools.sourceforge.net/event/event.html
4Although an Actor can also be a fictional character or a
legal entity, all of the parts of the character exist at all of
the moments of its existence, unlike events.
5The FOAF language is defined as “a dictionary of named
properties and classes”, http://xmlns.com/foaf/spec/
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Figure 1: The Simple Event Model, SEM. The core of SEM is constituted by the 5 classes: Event, Actor,
Role, Object, Place. These are sub-classes of TimeStampedEntity, from which they inherit the possibility to
be time stamped. TimeStampedEntity does not have instances. The boxes in green represent the different
typing classes. They are not mandatory, but they are provided as anchors for external vocabularies.

Object.
The Object is the class meant to describe “with what”

is something being done: this can range from physical ob-
jects like a boat compass to animate entities when they
are involved in a situation as instrument, in extreme cases.
Objects are related to Events via the generic property in-
volvedIn: a further specification of how an Object is par-
ticipating in an Event is made via the specification of the
Objects Role (see Role below). The kind of an Object (nav-
igation instrument) can be denoted with an instance of an
ObjectType, which can be borrowed from external vocabu-
laries. Objects can be time-stamped with the timeStampe-
dAt datatype property and associated to a Place with the
inPlace property.

Like Actor, Object corresponds to a class of entities de-
fined primarily through their spatial dimension, like the En-
durants / Continuants from DOLCE [7]. In SUMO [9], our
notion of Object is also represented by Object; it corre-
sponds to SomethingExisting in CYC. Dublin Core has two
classes for our notion of Object: PhysicalResource and Phys-
icalObject. In CultureSampo and in the Event Ontology,
different views on the objects are taken into account: instru-
ment and goal in the former, event:Factor and event:Product
in the latter. These distinctions, although represented in a
different ways (respectively as properties and classes) can
be modeled in SEM in the same manner: via the Role and
RoleType of the Object.

Place.
The Place is the class meant to describe “where’ is some-

thing happening: this can range from concepts (like the ones
from GeoNames6) to strings (like Dublin Core’s DCMI Box7

or Point8 scheme) or simple geographical coordinates (like
the ones defined in WGS849 or GeoRSS and GML10, for

6http://www.geonames.org/
7http://dublincore.org/documents/dcmi-box/
8http://dublincore.org/documents/dcmi-point/
9http://www.w3.org/2003/01/geo

10http://georss.org/gml

example). Places are related to Events via the generic prop-
erty inPlace: every class used as range for this property is
classified as a Place. It can be a physical object (in the har-
bor) or an imaginary place (Neverland), etc. The kind of a
Place (port, harbor) can be denoted with an instance of a
PlaceType, which can be borrowed from external vocabular-
ies. Places can be time-stamped with the timeStampedAt
datatype property and associated to an Object and a Role
with the inPlace property.

The Place is modeled via a complex pattern in DOLCE
[7]: it is a SpatialRegion related to the SpatialQuality of
a Class. This pattern is derived from the way Natural
Language is used to refer to Place. Although it is con-
ceptually less precise than DOLCE, a simple triple involv-
ing the classes of Event and the Place is sufficient for our
needs, so we opted for a simpler representation in SEM.
This simple representation of Place as a single class is also
commonly accepted (GeographicThing class in SUMO and
EnduringThing-Localized in CYC). Dublin Core proposes
two mechanisms: the class Location in dcterms, and a string
composed of defined attributes: the DCMI Period11. The
CultureSampo model defines one property (place), which
suggests that they also vote for the option of the simple
triple to represent places, although they use DOLCE as a
reference to align different vocabularies. The Event Ontol-
ogy recommends the use of GeoNames as a value for the
Place. We subsume this choice, enabling also for locations
with unclear boundaries, or boundaries changing over time
(a coastline), imaginary ones or any kind of entity that is
witnessing an event: a coastguard station for example.

Role.
The Role represents the function that is played by an in-

stance of one of SEM’s core classes, in the context of a given
event. Roles are time-stamped: this way it is possible to
represent the fact that the classes’ instance and its role have
a different time span. For example, a ship’s Captain has a
birth date that does not coincide with the date at which he

11http://dublincore.org/documents/dcmi-period/
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Figure 2: The modeling of Roles in SEM compared
with their modeling in CIDOC-CRM

started his role as captain. In the same fashion, Amster-
dam is a city since the late 12th century, but is the capital
of the Netherlands only since 1815; an object can have a
ritual function only at a given moment in time, during a re-
ligious ceremony for example. Instances can have different
Roles, depending on the Event in which they participate:
the ship’s Captain is a husband at home, each Role having
its own independent time-span. Roles are directly related to
Places: this allows to describe that a person with the Role of
Captain is in the command cabine, and participates in the
Event “Ferry Trip” in the Netherlands. The notion of Role is
modeled in CIDOC-CRM as a reification of the property of
an Actor participating in an Event: we use the same mod-
eling principle, with the Role concept at the place of the
reification. Figure 2 shows the similarity in the modeling,
despite the fact that different representation paradigms are
being used for the two examples.

Type system.
One of the design strength of SEM is to allow the con-

nection of the core classes to Types that can be defined
by a third party. Although it can seem a costly modeling
option, this solution is actually a generalization over Alan
Rector’s patterns for Value Partition and Value Sets12, in
the W3C Best Practices group. This way, we can use types
from vocabularies that are designed as Value Sets as well
as Value Partition. Figure3 shows Rector’s example pat-
terns along with the representation in SEM for this use
case. There are two possible ways of relating the core classes
to their corresponding Types: by using rdf:type or via our
custom properties (eventType, actorType, roleType, object-
Type and placeType). The reason to have created such
sub-properties is that some types can be domain-specific,
and thus can convey a very different meaning than more
“generic” types. For example, an actor Ship can have an ac-
torType “Oil Tanker” and have an rdf:type PhysicalEntity.
Intuitively, the scope of these two types is different. Types

12http://www.w3.org/TR/swbp-specified-values/

are not time-stamped, and their use is recommended but not
mandatory.

Time.
The Time is the datatype meant to describe “when” is

something happening: this can range from precise dates
(Thursday October the 12th at 14h30) to fuzzy (Estimated
Time of Arrival) or even imaginary time spans. TimeStam-
pedEntities are related to any kind of XML Schema datatype
representing time-stamps via the datatype property timeS-
tampedAt.

DOLCE’s pattern for Time is similar to the pattern used
to describe a Place: a TemporalRegion as value for a Tempo-
ralQuality related to an Entity. This pattern is also derived
from the way Natural Language is used to refer to Time:
people can refer to the quality of time as well as to some
region in the temporal space. Here again, our needs are ful-
filled by a simpler representation. Unlike SUMO, CYC and
the Event Ontology which require or recommend classes as
value for Time (the W3C Time Ontology13 for the latter),
we do not need more than an XML Literal representation
of a time-stamp. Indeed, we do not state anything about
Time itself, only about TemporalEntities, hence we do not
require a class. Modeling via a datatype value makes SEM
simpler. Dublin Core defined one pattern to express time
points as strings: conforming to the DCMI Period syntax
allows to be inter-operable with other systems. We recom-
mend the use of TIMEX214 or W3CDTF15 as value to rep-
resent time-stamps. They can both be specified as a schema
in the DCMI Period schema, and they subsume a controlled
vocabulary to express Time (ISO 8601). They allows to rep-
resent expressions as precise as complex dates and as fuzzy
as periods. It is even possible to represent mythical and rel-
ative time with this format. If a use case requires it, it is
also possible to extend SEM with a sub-property and use
a system based on classes (like the W3C Time Ontology)
instead of our default datatype system.

3.1 Accessibility and Extension
SEM is accessible online at the URL: http://semanticweb.

cs.vu.nl/2009/04/event/. It is informally mapped to a
set of event models (Event Ontology, CultureSampo, Dublin
Core, CIDOC-CRM) and of commonly used upper level on-
tologies: DOLCE, SUMO and CYC. This set of proposed
mappings has been modeled in SKOS16; the extended SEM
is available online17.

4. USE CASE: MARITIME SITUATIONAL

AWARENESS
We describe a Semantic Web application in which we au-

tomatically recognize events in domain-level data represent-
ing ship trajectories. From these atomic events, modeled as
SEM instances, we derive ship behavior types (slowing down,
speeding up, anchored) to reason about patterns: ship ma-
neuvering when approaching an anchorage.

13http://www.w3.org/TR/owl-time/
14http://fofoca.mitre.org/
15http://www.w3.org/TR/NOTE-datetime
16http://www.w3.org/2004/02/skos/
17http://semanticweb.cs.vu.nl/2009/04/
eventExtended/
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We transform the sensor-data trajectories into movement
predicates using a compression algorithm. We use GeoN-
ames18 as an ontology of maritime geographical concepts
and represent the movement predicates with SEM. We de-
fine rules over these two sources of knowledge, that allow
us high-level reasoning about the behavior of ships. These
rules, movement predicates and ontology are all integrated
in SWI-Prolog [17] using its Semantic Web libraries19 and
the spatial index that we have developed.

4.1 Abstraction of Trajectory Data

Trajectories.
The ship trajectory data in our application comes from

the Automatic Identification System (AIS). Each commer-
cial vessel larger than 300 tons carries an AIS transponder.
This transponder sends updates at regular intervals (in the
order of seconds) about, among other things, the ship’s
location, speed over ground and course over ground. We
will use these three time-series to extract movement pred-
icates. Let Tl = ((x1, y1), t1), . . . , ((xn, yn), tn) be a ship’s
location time-series, Ts = (s1, t1), . . . , (sn, tn) its speed over
ground time-series and Tc = (c1, t1), . . . , (cn, tn) its course
over ground time-series. The three time-series have samples
at the same time-points, however, the AIS samplerate is not
fixed. These time-series are from ships, relatively large ob-
jects that are constrained in their possible trajectories. Such
large objects generally do not jump around, nor turn and ac-
celerate very fast. In a sense, this type of movement data is
highly regular and is quite predictable.

18http://www.geonames.org
19http://www.swi-prolog.org/pldoc/package/semweb.
html

Piecewise Linear Segmentation.
The above mentioned regularity of the time-series sug-

gests that they can be compressed quite well using a piece-
wise linear representation. As we will see, such a compres-
sion is also easily convertible to a predicate representation.
Thus, as a first step to creating movement predicates we
compress the trajectory time-series using an algorithm that
creates a piecewise linear segmentation. As is mentioned in
[5] the variant that we use goes by many names. Especially
the two-dimensional variant is well known, it is called the
Douglas-Peucker algorithm [3] in carthography and Ramer’s
algorithm [11] in image processing. In machine learning it is
also known as “iterative end-points fit” [5]. This algorithm
compresses a time-series into linear segments by recursively
keeping the points that have maximum error higher than a
fixed threshold. In the form that we have defined it in algo-
rithm 1, the algorithm does not return the value time-point
pairs, but just the time-points, since we only need those in
the next step.

The function error((vi, ti), ((v1, t1), (vn, tn))) computes
the error that is produced when the points (v1, t1) and (vn, tn)
are used to (linearly) represent the time-series between t1
and tn and the point (vi, ti) is left out. For the location
time-series this function is defined as follows:

error(((xi, yi), ti), (((x1, y1), t1), ((xn, yn), tn)))

=
√

(xi − x′

i)
2 + (yi − y′

i)
2 ,

where (x′

i, y
′

i) is the orthogonal projection of (xi, yi)

onto the line through (x1, y1) and (xn, yn) . (1)

In other words, we compute the orthogonal distance be-
tween the point (xi, yi) and the line given by (x1, y1) and



Algorithm 1: PLS(T ,ǫ)

Data: A time-series: T = (v1, t1), . . . , (vn, tn), and the
maximum allowed error: ǫ.

Result: A list of time-points that are kept: T c.

dmax = 0, imax = 0
for i = 2 to n− 1 do

d = error((vi, ti), ((v1, t1), (vn, tn)))
if d > dmax then

imax = i
dmax = d

end

end
if dmax ≥ ǫ then // recursive calls

TA = PLS((v1, t1), . . . , (vimax
, timax

), ǫ)
TB = PLS((vimax

, timax
), . . . , (vn, tn), ǫ)

T c = tA1 , . . . , t
A
m−1, t

B
1 , . . . , tBk

else
T c = t1, tn

end
return T c

(xn, yn)
20. This is the error measure that is also used in the

Douglas-Peucker algorithm [3].
For the speed over ground time-series we define this func-

tion as:

error((si, ti), ((s1, t1), (sn, tn))) = ‖si − s ′i‖ ,

where s ′i = s1 +
ti − t1
tn − t1

(sn − s1) . (2)

This error is the difference between the actual speed over
ground value (si) at ti and the linearly interpolated value
(s ′i) based on the values (s1 and sn) at t1 and tn.

The error function for the course over ground time-series
is defined analogously to the one for the speed over ground
time-series.

Conversion to Movement Predicates.
Based on the piecewise linear segmentation described above,

we create movement predicates that we call segments. Let
Tl , Ts and Tc be the three time-series, corresponding to a
ship’s trajectory, that we mentioned earlier. Then, using
algorithm 1 we can construct the set:

TP = PLS(Tl ,ǫl) ∪PLS(Ts ,ǫs) ∪PLS(Tc,ǫc) . (3)

The values of ǫ differ per type of time-series.
Essentially, the set TP contains all the time-points that

we want to keep. These points represent a change in ship be-
havior, between two of those points the behavior of a ship is
regarded as constant. Based on this idea, using TP , we cre-
ate segment predicates for a ship trajectory in the following
way:

S = {segment(u, li, lj , si, sj , ci, cj , ti, tj) | ti, tj ∈ TP

∧ ti < tj ∧ ¬∃tk(ti < tk < tj) ∧ (li, ti), (lj , tj) ∈ Tl

∧ (si, ti), (sj , tj) ∈ Ts ∧ (ci, ti), (cj , tj) ∈ Tc} . (4)

Note that l is a short-hand for (x, y). We take two con-
secutive time-points from TP and take the location, speed

20In this case the location time-series is treated as a two-
dimensional line, i.e. the time dimension is ignored.

and course values corresponding to those time-points from
the time-series, together they make up a segment. For each
segment we generate a URI, u, based on the ship’s unique
identifier, the Maritime Mobile Service Identity number, and
the start time (ti), and hence uniquely identifies the seg-
ment. This URI, u, is used as the identifier of the event
that corresponds to the ship’s behavior in the segment.

Segments as Events in SEM.
We assign types and SEM properties to the URIs of the

segments to define their semantics. Every segment starts
out with one type, rdf:type sem:Event. Additional (exter-
nal) types are added by evaluating Prolog deduction rules
that reason about the behavior during the segment. Simple
event types are added by attaching an sem:eventType prop-
erty to the segment that refers to the segment’s event type.
For example, when a segment has a low start speed and a
high end speed, the triple assigning the type “speeding up”
to the segment 〈u, sem:eventType, poseidon:speeding up〉 is
added into the knowledge base. Complex events, like ferry
trips, that aggregate segments, are added as new Events of
which the simple events are parts. For example, the event
poseidon:ferry trip m n has sem:eventType poseidon:ferry trip

and segments are added to this trip by asserting triples
like 〈u, sem:partOf, poseidon:ferry trip m n 〉. This is illus-
trated in figure 4 on line 6. Hierarchical relations between
event types are represented with the sem:parentType prop-
erty. For example, poseidon:anchored has sem:parentType

poseidon:stopped. The location of events is attached to the
segment using properties from the W3C WGS84 vocabulary.
This is illustrated in figure 4 on line 11. Time is represented
in TIMEX2 format as an XML Literal attached to the seg-
ment with sem:beginsAt and sem:endsAt, both subproperties
of sem:timeStampedAt. This is illustrated in figure 4 on line
13 to 16.

4.2 Linking to Ontologies
To classify the places at which events happen we use

GeoNames Features. We relate the anonymous places (see
line number 7 to 12 in figure 4) indicated with latitude and
longitude to the typed places in GeoNames by geographical
proximity reasoning with the Haversine function.

d = R · 2 arctan2(
√
a,

√
1− a)

a = sin2(δlat/2) + cos(lat1) · cos(lat2) · sin2(δlong/2)

where R = the earth’s radius, δlat is the difference in lati-
tude and δlong is the difference in longitude. Using a spatial
index in Prolog based on an R*-tree implementation from
the spatialindex package21, we can efficiently derive whether
a ship is lying still in a harbor, perhaps moored, or at an
offshore anchorage or just somewhere out at sea. Ship in-
formation, like the callsign, flag, owner, etc. are fetched
from various websites22 and automatically converted to cor-
responding RDF datatype properties of the ships (Actors in
SEM). Ship types mentioned in the MMSI23 number of the
AIS messages24 are represented as instances of ActorType.
This is illustrated in figure 4 on line 20.

21http://trac.gispython.org/spatialindex/
22e.g. http://www.vesseltracker.com/
23see Appendix 43 of the International Telecommunications
Union Radio Regulations

24http://www.uais.org/



1 poseidon:mmsi_xxxxxxxx a sem:Event ;
2 sem:eventType seg:AISsegment ;
3 % low-level behavior semantics
4 sem:eventType poseidon:departure ;
5 % high-level behavior semantics
6 sem:partOf poseidon:ferry_trip_xxxxxxxx_6 ;
7 seg:beginsAtPlace [
8 a sem:Place ;
9 % classified as a harbor due to proximity to

10 % geos:2750318, see line number 22
11 wgs84:lat "52.9786" ; wgs84:long "4.7843" ;
12 ] ;
13 sem:beginsAt "<timex2object>
14 <timex2 VAL="2008-08-04T03:00">
15 2008-08-04T03:00 LT
16 </timex2object>"^^<rdf:parseType="Literal"> ;
17 sem:involves poseidon:ship_xxxxxxxx .
18

19 poseidon:ship_xxxxxxxx a sem:Actor ;
20 sem:actorType poseidon:atype_passenger_vessel ;
21 ais:name "USS Enterprise" ;
22 ... ;
23 ais:mmsi "xxxxxxxx" .
24

25 # matched to the segment location by proximity
26 geos:2750318 a geo:Feature ;
27 geo:name "Nieuwe Haven" ;
28 geo:parentFeature geos:2749879 ;
29 wgs84:lat "52.966" ; wgs84:long "4.783" ;
30 ... ;
31 geo:featureCode geo:H.HBR .

Figure 4: A ship behavior segment modeled in SEM
and an associated GeoNames Feature. In this case,
the ship is at a harbor.

4.3 Defining SEM Events
Complex events are derived from the simple events that

correspond to the Piecewise Linear Segmentation results
by executing Prolog deduction rules. In figure 5 we show
the rules involved in classifying segments belonging to ferry
trips. The low-level segments are accessed in line 38, 49,
and 50. The temporal order of the segments is established
by defining a successor relation in line 49. Simple behavior
rules for ships sitting still and moving are defined on line
33, 34, and 35. Complex behavior rules for ship trips and
the more specific ferry trip, which goes back and forth be-

1 % semantic classification of ferry trip behavior
2 classify_ferry_behavior :-
3 % define ferry trip event
4 rdf_bnode(Trip),
5 rdf_assert(Trip, rdf:type, poseidon:ferry_trip),
6 % find instances of ferry trips with ferry_trip/6
7 findall(trip(A,B), ferry_trip(A,_,_,_,B,_), Trips),
8 forall(member(trip(From, To), Trips),
9 % make intermediate segments part of the trip

10 ( seg_from_to(From , To, Segments),
11 forall(member(S, Segments),
12 rdf_assert(S, sem:partOf, Trip))
13 )).
14

15 % rule defining ferry behavior semantics
16 % trip from Harbor H0 to H1 and back
17 % via Segment S0, S1, and S2
18 ferry_trip(S0, H0, S1 ,H1, S2, H0) :-
19 trip(S0, H0, S1, H1),
20 trip(S1, H1, S2, H0).

22 trip(S0, H0, S1, H1) :-
23 % ship is stopped at harbor H0 during S0
24 stopped_at_harbor(S0, H0),
25 % in successive segments N..M it is moving
26 seg_succ(S0, N),
27 seg_succ_while(N, M, moving),
28 seg_succ(M, S1),
29 % ship is stopped at harbor H1 during S1
30 stopped_at_harbor(S1, S1).
31

32 moving(S) :- not(stopped(S)).
33 stopped(S) :- speed(S, 0).
34 stopped_at_harbor(S, H) :-
35 stopped(S),
36 % fetch location of segment
37 S = segment(_,L,_,_,_,_,_,_,_), % trajectory data
38 call(S),
39 % find nearest place within margin
40 nearest(L, H), % calls spatial index
41 rdf(H, geo:featureCode, geo:’H.HBR’),
42 distance(L,H,D),
43 D < 0.175. % scope of being in a harbor
44

45 % trajectory data
46 % segments are successors if begin and end time matches
47 seg_succ(segment(_,_,_,_,_,_,_,_,T),
48 segment(_,_,_,_,_,_,_,T,_)).
49

50 % S1 is a valid successor if Pred holds over it
51 seg_succ_if(S0, S1, Pred) :-
52 seg_succ(S0, S1),
53 % construct condition and test it
54 Goal =.. [ Pred, S1 ],
55 Goal.
56

57 % tail recursive definition of transitive segment
58 % successor while condition Pred holds
59 seg_succ_while(S0, SN, Pred) :-
60 seg_succ_if(S0, SN, Pred).
61 seg_succ_while(S0, SN, Pred) :-
62 seg_succ_if(S0, S1, Pred),
63 seg_succ_while(S1, SN, Pred).
64

65 % collect all segments between segment From and To
66 seg_from_to(To, To, [To]).
67 seg_from_to(From, To, [From|ToList]) :-
68 seg_succ(From, Next),
69 seg_from_to(Next, To, ToList).

Figure 5: SWI-Prolog rules that link domain-level
data to place and behavior semantics. The rules in
this example are used to classify ferry behavior.

tween two harbors are defined respectively on line 23 and 19.
The complex trip behavior rule uses the phenomenon “on-
going behavior” to define that a ship does not stop during a
trip (otherwise it would be two trips). This ongoing behav-
ior is defined with a conditional successor relation, which is
defined by the clauses on line 54, 62, and 69. The actual
classification of the ferry trip happens in the clause defined
on line 2. This clause adds the RDF triples that create the
new complex event for the ferry trip.

5. CONCLUSION AND FUTURE WORK
We learn event instances from raw data: AIS messages

transmitting information about ships’ navigation parame-
ters. To recognize simple behavior events from these sen-
sor data, we use a compression, Piecewise Linear Segmenta-
tion. This decreases the number of atomic events we have



to deal with roughly by a factor 25. We represent the differ-
ent facets of behavior events, when (TimeStampedEntity) did
who (Actor) do what (Event), where (Place), to whom (Roles
of Actors), in the Simple Event Model. We combine spatial
reasoning, semantic web reasoning and rules in SWI-Prolog
to create new, higher-level, events on top of the recognized
events.

In the future SEM will be used as a basic schema for
the Semantic Search Engine ClioPatria [16]. We would like
to extend the spatial indexing Prolog package to deal with
common complex shapes, like polygons and linestrings, and
time-parametrized shapes. This would allow us to write ef-
ficient rules about the relative position of moving ships. At
the moment this is not possible, as we can only index static
objects, like harbors. We would like to extend the web in-
formation extraction toolkit we use to find ship information
like callsign, flag, and draught to extend the range of queries
we can formulate about ships. A future challenge is to move
from only using existing place features like harbors to also
using automatically discovered features, like unofficial ship
lanes or queues for tankers in front of a harbor.
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