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Fig. 1. Presto enables maritime-domain experts to insert artificial vessel trajectories in tracked AIS data. An artificial track, in orange,
is added in the opposite direction of a Dutch sea lane that is visible by a trail of green triangles, which indicate tracked vessels.

Abstract—We present an integrated and multi-disciplinary approach for analyzing behavior of moving objects. The results are
ongoing research of four different partners in the Dutch Poseidon project [3] where we aim for new developments for Maritime Safety
and Security (MSS) systems to monitor vessels. We focus on the following requirements for an MSS system: abstraction of large
amounts of trajectory sensor data, fusion of multiple heterogeneous data sources, and visual analysis of the combined data sources.
We start by extracting segments of consistent movement from trajectory data, which we store as instances of the Simple Event
Model (SEM), an event ontology represented in the Resource Description Framework (RDF). Then we add data from the web about
vessels to enrich the sensor data. This additional information is integrated with the representation of the vessels (actors) in SEM.
The enriched trajectory data is stored in a knowledge base, which is queried by a visual analytics tool to search for spatio-temporal
patterns. Although our approach is dedicated to MSS systems, we expect it to be useful in other domains.

Index Terms—Trajectory Generation, Trajectory Generalization, Event Modeling, Semantic Web, Visual Analytics.

1 INTRODUCTION

Since the early fifties [4], spatio-temporal patterns [1] have been stud-
ied in the trajectories of moving objects. Current technology can be
used to register behavior on a large scale: many objects are tracked
for long periods of time. By using data other than the geometry of
a trajectory, we may find different spatio-temporal patterns [8]. For
instance, when vessels are tracked, we may look up their type on the
web and compare trajectories per type, and conclude that passenger
ships use other routes than cargo ships.

We present a method that enables behavioral analysis of moving
objects using multiple heterogeneous data sources. We demonstrate
an integrated approach of multi-disciplinary research in the Dutch Po-
seidon project [3], which aims for new methods to monitor vessels for
ensuring safety and security in coastal areas with so called Maritime
Safety and Security (MSS) systems. Figure 2 shows an overview of
our System of Systems (SoS); a collection of independent systems,
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which result in a system with more capabilities when put together. We
have three low-level data sources: AIS messages from tracked vessels,
generated AIS messages from Presto (see Sec. 2), and web data. The
two former sources are converted into meaningful Simple Event Model
instances (see Sec. 3.1) by Piecewise Linear Segmentation (PLS) (see
Sec. 2.2). The web data are added to these event instances in an SWI-
Prolog based RDF store (see Sec. 3.2). Rules can be used to define be-
havior on top of the movement events (see [13]). The visual analytics
tool displays movements in a trajectory contingency table, enabling
human users to find spatio-temporal patterns in the knowledge base
(see Sec. 4). Conclusions and future work are discussed in Section 5.

2 VESSEL TRAJECTORY DATA

We focus on large vessels as moving objects, since they have to trans-
mit their status using the Automatic Identification System (AIS) [6].
AIS is an advanced Global Positioning System (GPS) device that fre-
quently broadcasts messages with data from the vessel and its move-
ment. The data contains many attributes; for vessels we have identifi-
cation numbers, a name, dimensions, and a type, e.g. passenger ship
or tanker. The attributes for the movement are, for instance, position,
time, velocity, destination, draught, and navigational status, e.g. at
anchor, moored, or fishing. The latter comes from a controlled vocab-
ulary in the AIS protocol. Captains use AIS to receive the status of
neighboring vessels to prevent collisions, but AIS can also be received
using a sensor network connected to an MSS system for real-time ves-
sel monitoring and long-term analysis.
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Fig. 2. Our approach as a System of Systems architecture for analysis of a multi-source moving object knowledge base.

In general, the continuous movement of an object, such as a vessel,
is captured by sampling its trajectory at various moments in time. A
sample contains all information available at that very moment about
the movement of an object and about the object itself. We model a tra-
jectory T as a sequence of n-tuples ααα i = (α i

0,α
i
1, . . . ,α

i
n−1), where the

j-th element of the i-th tuple contains attribute α
i
j . Each tuple includes

the attributes time ti, position pi, velocity vi, and object identifier oi.

2.1 Creating Artificial Vessel Trajectories with Presto

We consider two types of AIS data: real-world trajectory messages
emitted by vessels and manually created trajectory data. An MSS sys-
tem aims at guiding a surveillance operator to find maritime anoma-
lies, such as vessel traffic violations, illegal fishing activities, and drug
smuggling. In real-world data, serious maritime anomalies rarely oc-
cur. Because the MSS system might be deployed in any maritime cir-
cumstance, we need to evaluate if arbitrary anomalies can be detected
properly. To this end, we have developed a desktop application with
NASA World Wind [9], called Presto (see Fig. 1) that enables mar-
itime domain-experts to easily create artificial scenario’s, including
the above mentioned anomalies. In contrast to existing simulation ap-
plications, such as VR-Forces [15], which impose restrictive behavior
models, our application gives the expert full control over the vessel
trajectories, by means of defining way points. The new vessel trajec-
tories are exported in AIS data format and fused with real-world AIS
data, such that the artificial data cannot be distinguished up front from
the original data by the system in the further processing.

2.2 Piecewise Linear Segmentation

Vessels frequently broadcast messages and are constrained in their
movement. Consequently, they sail often along predictable courses,
and therefore many subsequent messages ααα i do not semantically dif-
fer. In the analysis of logged AIS data, these messages are not mean-
ingful for the movement pattern definition, hence we can abstract to
meaningful trajectory segments by removing these redundant mes-
sages with a trajectory compression algorithm, like [7].

The temporal component is the main characteristic that differen-
tiates a trajectory from a polyline, which is known to be efficiently
compressed by the Douglas-Peucker (DP) line generalization algo-
rithm [2]. Figure 3 illustrates a generic version of the DP algorithm
that compresses a sequence of tuples ααα i by inspecting the largest er-
ror εmax = E(αααmax,ααα

′

max) between a tuple αααmax and the reconstructed
tuple ααα

′

max =R(ααα start ,αααmax,αααend) at tuple αααmax, for some error func-
tion E and reconstruction function R. If εmax is larger than some given
error ε , then we select αααmax and recursively compress the sequence
ααα start . . .αααmax and αααmax . . .αααend , otherwise the algorithm stops and
accepts αααstart . . .αααend . For polylines, E is the Euclidian distance and
R is the projection of pmax on the line pstartpend .
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Fig. 3. A compressed trajectory after one step with the DP algorithm.

We are investigating modifications of the DP algorithm for trajec-
tories. Our data is compressed with a two-stage modification, where
in the first stage tuples ααα i are selected using the generic DP algorithm
to reconstruct all velocities vi within error εv, and then, between each
pair of selected points, the positions are compressed as a polyline. The
velocity v′max is reconstructed with R being the linear interpolation be-
tween vstart and vend at tmax and the error E is the absolute difference.

The segments of the compressed trajectories are stored in a MySQL
database and constitute the first level of abstraction for meaningful
movements, which can be agglomerated in complex behavior defini-
tion using the Simple Event Model (see Sec. 3.1).

3 SEMANTIC WEB TECHNOLOGY

Behavior can be derived from low-level movements, such as the seg-
ments obtained from the PLS in Section 2.2. Behavior definition re-
quires the combined knowledge about an item’s position, movement
characteristics and its type information: the same movement pattern
may have different implications across object types. For instance, if a
vessel shuttles between two locations, it may be a dredger or a ferry. If
we know that a vessel is a dredger, then one of the locations is a dredg-
ing place. Oppositely, if one of the locations is a dredging place, then
the vessel is a dredger. In order to reason about information coming
from different sources, it needs to be integrated. For this purpose, we
have developed the Simple Event Model.

3.1 Simple Event Model

The Simple Event Model (SEM) [13] provides a set of classes and
properties to define events and their context. SEM can be used to
describe trajectories as events. SEM’s classes are organized in three
groups (see Fig. 4). SEM Core classes describe the classic parts of an
event: What is happening? (sem:Event, e.g., anchoring, fishing), Who
is doing something? (sem:Actor, e.g., a vessel), Where? (sem:Place,
e.g., in Rotterdam), and When? (sem:Time, e.g., during year 2008).
SEM Types can be linked to each of the Core classes, which typically
come from domain-specific vocabularies, like the IMO thesaurus [5]
or a vessel classification, such as the vessel types in [6, 14]. SEM
Constraints express Temporary, Authoritative and Role constraints on
the properties between SEM Classes. Roles can apply to the partici-
pation of an Actor in an Event (an Actor vessel has the Role coalition
leader during an Event NATO joint operation), but also to the Loca-
tion of the Event (Place Rotterdam has the Role journey destination
in a trip event). Time and Place can have symbolic (URIs) or con-
crete values (e.g., coordinates), to fit the representation of most data
on the Web. All the classes and properties of SEM are optional and
duplicable: SEM can integrate the partial information provided by dif-
ferent sources as different aspects of an event. It is possible to create
instances of sem:Actors without specifying explicitly the sem:Event they
participate in: we can describe vessels (e.g., information from web-
sites) independently from their behavior description.

The instances of SEM are either accessed from the MySQL
database via the D2RQ platform [12] (for AIS events) or directly form
the SWI-Prolog based triple store [11] (for events extracted and con-
verted from the web) by the rules defining ship types and ship be-
havior. The rules are written in SWI-Prolog and the triple store is a
knowledge base that enables us to link the different parts of an event
represented in SEM with semantic web and spatial reasoning.
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Fig. 4. The Simple Event Model. Ellipses represent classes, arrows represent properties between them and square boxes represent datatypes.
Open-ended arrows represent subclass properties, dotted arrows are typing properties and the regular arrows’ semantics is given by their labels.

3.2 Moving Object Knowledge Base

Instances of SEM events from AIS are accessed as RDF [17] data from
the D2RQ platform, and are available for reasoning in the knowl-
edge base. To be able to do efficient reasoning about ship behav-
ior, more information and data sources than the AIS messages have
to be taken into account. For example, some websites contain infor-
mation about ship properties, some others contain information about
geographic places. Some information is already present as RDF on the
web (DBpedia.org and GeoNames.org), while most is still exposed as
HTML. We give a simple example of how different dimensions about
a single SEM event can be collected from the web and used together
within a Prolog rule that defines the notion of ship from the Euro-
pean Union. Other rules can then build on this notion of European
ship and define behavior patterns at this new level of abstraction. AIS
messages contain some identifying information about the broadcasting
ship: name, call sign, MMSI and IMO [5]. We use the two latter to
automatically query the web [14] for additional information about the
ship, and convert them semi-automatically to RDF. One piece of such
information is the flag of the ship: the name of the country in which
it is registered. The flag is captured as a mere string, but this string
is in turn used to automatically query the GeoNames’ RDF database,
to retrieve the URI and RDF knowledge that corresponds to this flag.
The SWI-Prolog Semantic web package [11] can then be used to this
enriched data. A Prolog rule combining RDF graph query and spatial
hierarchical reasoning retrieves the parent feature of the URI corre-
sponding to the ship’s flag, in GeoNames, and adds a new triple to the
knowledge about the corresponding SEM event’s Actor: the ship send-
ing the AIS message. As the parent feature of a country in GeoNames
is the continent it belongs to, the new triple added is the fact that the
ship’s flag belongs or not to a country from the European Union.

SEM is the central piece for aggregating knowledge and resources
at different levels of abstraction, that can be used in complex rules
defining ship behavior. These complex events are also multidimen-
sional data that can be explored by humans, to find manually patterns
relevant to a certain domain or situation. A powerful visualization
tool is needed to take advantage of the richness of the knowledge and
present it in a useful way to a human user.

4 VISUALIZATION WITH TRAJECTORY CONTINGENCY TABLES

The knowledge base can be browsed with an interactive Trajectory
Contingency Table (TCT). This visualization aims for expert users,
which want to discover relations between attributes in terms of spatial
patterns, such as the change over time for different types of vessels.

The visualization retrieves trajectories by querying the knowledge
base with SPARQL [18] queries (Fig. 5), which convert segments to
trajectories. First, we determine which elements and types the tuples
ααα i have (Fig. 5a), by searching for owl:DatatypeProperty properties that
contain data and rdf:datatype properties that contain the data types, such
as xsd:int and xsd:string. Then, for each vessel identified with an MMSI
(Fig. 5b), a trajectory ααα0, . . . ,αααN−1 is reconstructed (Fig. 5c) by gath-

ering all attributes of the Actor with the current MMSI, as illustrated
with ais:name, and the attributes of the accompanying events as illus-
trated with sem:hasBeginTimeStamp. Since the location is a sem:Place

class it is treated separately, and allows us to use the external WGS84
vocabulary [16]. To avoid duplications, attributes for Events and Ac-
tors are stored separately.

In a contingency table [10] two categorical attributes are put on the
axes of a table by assigning (groups of) outcomes to a row (or column).
In a cell, the number of data items are shown that contain the outcomes
of the corresponding row and column for the attributes assigned to the
axes. Furthermore, each axis has an additional row that shows for each
column the sum of the items. Instead of showing a number in the table,
we display a map with the parts of tracks that satisfy the constraints
of the cell (see Fig. 6). For instance, by putting time and type on the
axes, we see the change of spatial usage over time for various types.

1 # A. Get attributes with their types

2 SELECT DISTINCT ?attr ?type WHERE {

3 ?attr a owl:DatatypeProperty .

4 ?attr rdf:datatype ?type }

5

6 # B. Get all MMSI ship identifiers

7 SELECT DISTINCT ?mmsi WHERE { ?ship ais:mmsi ?mmsi }

8

9 # C. Get the trajectory for a certain [MMSI]

10 SELECT DISTINCT ?time ?lat ?lon ?name WHERE {

11 ?ship ais:mmsi ?mmsi . FILTER ( ?mmsi = ’[MMSI]’ )

12 ?event sem:hasActor ?ship .

13 ?event seg:hasBeginPlace ?place .

14 ?place wgs84:lat ?lat .

15 ?place wgs84:lon ?lon .

16 # An example of a trajectory attribute

17 ?event sem:hasBeginTimeStamp ?time .

18 # An example of a ship attribute

19 ?ship ais:name ?name } ORDER BY ?time

Fig. 5. SPARQL queries to reconstruct trajectories from SEM instances.

Since the input data is large and consists of many attributes, the
TCT is extended with two views: Attributes and Overview (see Fig. 6).
In the Attributes view on the left, all attributes are listed and divided
in bins, which are shown as a histogram. The bins are selectable and
filter the whole data set. For example, by choosing the tankers bin of
the vessel type attribute only tankers are in the TCT. These attributes
can be dragged to the axes of the TCT to quickly choose different
settings. In the overview on the right of the TCT, the selection of
data made by choosing bins (focus) is highlighted on top of all data
(context). In the overview it is possible to brush parts of the focused
trajectories to define areas, which can be used to define a new boolean
attribute stating whether or not a segment is contained in the area.
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Fig. 6. A Trajectory Contingency Table (TCT) with an Attribute view (left) and an Overview (right). About 200 vessel trajectories in front of the
Dutch coast during a single day are shown. In the Attributes view, attributes are divided in bins and listed with two histograms: chosen bins and
hidden bins. The draught of selected ships is between 3.1m and 7.8m, for the data in all views. The TCT is displayed with time and vessel type

attributes on the axes. Each cell contains a map with parts of trajectories that satisfy the accompanying row and column labels. From the TCT we
may conclude the following: First, vessels have a steady spatial pattern across the temporal period considered. Second, tankers and cargo ships
tend to have a similar spatial pattern. Third, passengers ships sail a commuting pattern. To conclude, other vessel types stay close to the coast. In
the overview, selected trajectories (focus) are highlighted in dark gray on top of the context containing all data in light gray and a map. By brushing
we define areas to define new attributes.

5 CONCLUSION AND FUTURE WORKS

As result of the Dutch Poseidon project, illustrated by vessel traffic
data, we have presented an integrated approach for analyzing moving
object data. The approach includes trajectory generation using Presto,
trajectory compression using Piecewise Linear Segmentation, trajec-
tory modeling by the Simple Event Model, which is the data model of
our knowledge base that can be visualized using a Trajectory Contin-
gency Table.

In future research we will include high-level abstractions of trajec-
tories in SEM. Furthermore, we would like to efficiently describe and
reason with the relative position of moving ships. The main challenge
in the knowledge base will be reasoning with automatically discovered
information, such as a location that is described as harbor on the web.
The trajectory contingency tables need support to select subsets and
compare them for various attributes simultaneously. Finally, we will
investigate whether our approach can be used in other domains.
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