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Abstract Bridging the gap between low-level features and semantics is a problem

commonly acknowledged in the Multimedia community. Event modeling can �ll this

gap by representing knowledge about the data at di�erent level of abstraction. In this

paper we present the Simple Event Model (SEM) and its application in a Maritime

Safety and Security use case about Situational Awareness, where the data also come

as low-level features (of ship trajectories). We show how we abstract over these low-

level features, recognize simple behavior events using a Piecewise Linear Segmentation

algorithm, and model the resulting events as instances of SEM. We aggregate web

data from di�erent sources, apply deduction rules, spatial proximity reasoning, and

semantic web reasoning in SWI-Prolog to derive abstract events from the recognized

simple events. The use case described in this paper comes from the Dutch Poseidon

project.
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1 Introduction

The notion of \bridging the gap" [20] is well known in the Multimedia �eld: the missing

chain link between low-level data (e.g. features extracted from a video, or in the case of

this paper, sensory data reporting ship movement) and semantics. Event modeling can

�ll the gap, cf. [8]. In this paper we show how the Simple Event Model (SEM) can be

used as a semantic layer over abstractions derived from domain-level raw data. Data

processing techniques can yield knowledge about the world at di�erent levels of abstrac-

tion. For example, in the �eld of moving object analysis, there are machine learning

techniques for recognizing ocking based on GPS data, and there are approaches for

discovering the goal of a trip, like going back and forth to the o�ce or the supermarket.

The results of the latter technique give higher-level knowledge about the world than

those of the former. With respect to multimedia applications Westermann and Jain

state (in [24]) that \Basing the representation of events in multimedia applications on

a common model makes it easier to create homogeneous event views based on the same

model that syndicate events from di�erent applications. Thus, a common multimedia

event model promotes the integration of applications. It also facilitates homogeneous

access to and interlinking of events from di�erent applications, thereby potentially giv-

ing users insights that they couldn't obtain from one application alone." Although the

application discussed in this paper comes from a di�erent domain, the main goal of

SEM is the same: to facilitate the integration of knowledge at di�erent levels of abstrac-

tion. Problems that come with the integration of knowledge obtained from di�erent

methods are heterogeneity and incompleteness. SEM was designed to be robust against

missing and duplicate information. We demonstrate the use of SEM to reason over ship

behavior at various levels of abstraction integrating knowledge from the web. This use

case is particularly interesting, because it shows how track data is not enough for a

human system operator to get a good understanding of the maritime situation. This

can only be achieved by combining the tracks with external knowledge.

We get ship movement tracks from Marine Automatic Identi�cation System (AIS)1

messages, sent by ships at a regular interval to receivers. AIS messages post the ship's

navigation parameters. We describe a method to recognize meaningful events in this

ship movement data, and to model them as instances of SEM. We write rules in SWI-

Prolog [26] that determine the semantics of these movement events, and integrate them

with GeoNames2 concepts. This determination process follows a layered approach. First

we recognize simple movement events like stopping and moving, then we build on these

events to de�ne more complex movement event patterns like trips (series of consecutive

movements). These are then combined with knowledge about the surroundings and the

ships to yield semantically richer events like anchoring (a stop at an anchorage), harbor

approaches (movements that end in a stop at a harbor), and ferry trips (repetitive trips

between the same two harbors).

The rest of this paper is organized as follows. We present SEM itself in section 2, and

its relation to existing event models in section 3. We continue with the description of our

1 http://en.wikipedia.org/wiki/Automatic_Identification_System
2 http://www.geonames.org/
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use case: the automatic generation of SEM Events from AIS messages for Situational

Awareness in section 4. We conclude and discuss future work in section 5.

2 SEM: Simple Event Model

SEM was designed to represent events in the broad sense of the word, derived from

various sources (from the web, sensory data, historical documents, etc.). These data

can be incomplete (e.g. missing values) and partial (e.g. missing entire facets), and

they follow di�erent design decisions. SEM has to be very exible to cope with these

issues. As SEM is meant to represent data from uncontrollable sources, the notions

of temporary validity (during what temporal interval an event or a statement holds),

roles (the kind of participation in an event) and authority (according to whom an

event or statement holds) become important. It is also important to allow all classes

and properties in the model to be optional and duplicable, and to be exible towards

di�erent ways of modeling time, place, role, and type. In the rest of this section we

describe how these requirements are implemented in SEM. First we discuss the classes

and properties that make up SEM; then how to model views, roles and temporary

validity as constraints on properties, the notion of authority; how to model time and

space with symbols (c.q. URIs) or values (c.q. coordinates). We illustrate these with

a simple example of how a maritime event can be modeled in SEM, represented in

�gure 5.

Classes SEM's classes are divided in three groups: Core classes, Types, and Con-

straints. This is illustrated in Figure 1. There are four core classes: sem:Event (what

happens), sem:Actor (who or what participated), sem:Place (where), sem:Time (when).

Each core class has an associated sem:Type class, which contains resources that in-

dicate the type of a core individual. Individuals and their types are usually borrowed

from other vocabularies. For example, the sem:Place \Harwich" (geo:7116094) from our

example (see �gures 5 and 6) and its sem:PlaceType \Harbor" (geo:H.HBR) are bor-

rowed from the geographic ontology GeoNames3. Alternatively, the types could also

be borrowed from the LSCOM4 ontology.

The sem:Type classes exist to aggregate the various implementations of type systems

in any vocabulary. Some vocabularies do not have properties that exactly correspond

to the sem:type property, even though a type can be derived from the value of other

properties. This can be done by using Alan Rector's Value Sets and Value Partition

patterns.5 These design patterns are illustrated in �gure 2. Having explicit sem:Type

classes provides a placeholder to de�ne these patterns. If you want to make the class of

all harbors using GeoNames' geo:featureCode property you could do this in the following

two ways. You could de�ne geo:featureCode to be a subproperty of sem:placeType. This

makes geo:H.HBR a class, containing all geo:Features that are a harbor. If you do not

want to turn the individual geo:H.HBR into a class you can follow the value sets pattern

and de�ne the set of harbors to be a subclass of sem:Place and an owl:Restriction

on the geo:featureCode property with owl:hasValue geo:H.HBR. This approach keeps

geo:H.HBR an individual.

3 http://www.geonames.org/
4 http://www.lscom.org/ontology/
5 http://www.w3.org/TR/swbp-specified-values/
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Fig. 1 The classes of the Simple Event Model. Arrows with open arrow heads symbolize
rdfs:subClassOf properties. Dashed arrows symbolize subproperties of rdf:type; regular arrows
represent other properties.

Besides the sem:Actor class, a class sem:Object has been de�ned as a rdfs:subClassOf

sem:Actor, for the cases where it is necessary to specify a distinction between these two

concepts. For example, a container loaded on a container ship is a simple object that

does not participate in a trip, but might be interesting to mention in the context of the

event. If there would be an event in which the container falls overboard then it would

be a sem:Actor even though, like the ship, it is an inanimate object.

The class sem:Authority is used to indicate according to whom a statement is valid.

Individuals of sem:Authority can be, but are not necessarily sem:Actors. They can also

symbolize data sources, such as the URN of a web services. The sem:Authority class is

meant as a hook for provenance and trust reasoning, even though SEM itself does not

explicitly provides these. Additional trust reasoning, like evidential reasoning [4], can

be superimposed on SEM.

The class sem:Place de�nes a symbolic place, which does not need to have a location

indicated by coordinates per se, but which can be given a geolocation. This way SEM

can represent both concrete and symbolic places (e.g. \sandy desert"). In our use case,

the location of events is attached to the segment using properties from the W3CWGS84

vocabulary6. This is illustrated in �gure 7 on line 11.

The class sem:Time de�nes a symbolic time, analogous to the symbolic places de-

scribed above, which values can be taken from the W3C's Time ontology7 amongst

other time ontologies. It is also possible to de�ne time as a simple (set of) data value(s)

6 http://www.w3.org/2003/01/geo/
7 http://www.w3.org/TR/owl-time/
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Fig. 2 Alan Rector's value sets (top) and value partition (bottom) patterns applied to SEM
(left) compared to the original examples from the W3C working group note (right).

in SEM, see the presentation of the sem:hasTimeStamp properties below. In our use

case, time is represented as data values in ISO 8601 as a RDF Literal or TIMEX format8

as a RDF Literal of type rdf:XMLLiteral attached to the segment with sem:hasBegin-

TimeStamp and sem:hasEndTimeStamp, both subproperties of sem:hasTimeStamp. This

is illustrated in �gure 7 on line 13 to 16.

Properties SEM's properties are divided in three kinds: sem:eventProperties, sem:type

properties and a few miscellaneous properties like sem:accordingTo and sem:hasTime-

Stamp's subproperties, see �gure 3. The sem:eventProperties relate sem:Events to other

individuals. A sem:type relates individuals of the sem:Core class to individuals of sem:-

Type. There are speci�c subproperties of sem:type for each of the core classes, for

example sem:eventType, to facilitate querying. They reduce the strain on reasoners,

because sem:eventType subproperty already tells you that it points to an individ-

ual of sem:EventType, hence this does not have to be derived by subsumption rea-

soning. sem:accordingTo relates a sem:View to a sem:Authority and is used to repre-

sent opinions. There are seven sem:hasTimeStamp properties. One for single time val-

ues, sem:hasTimeStamp; two for time intervals, sem:hasBeginTimeStamp and sem:has-

EndTimeStamp; and four for uncertain time intervals, sem:hasEarliestBeginTimeStamp,

sem:hasLatestBeginTimeStamp, sem:hasEarliestEndTimeStamp, and sem:hasLatestEnd-

TimeStamp. The latter kind of intervals is used to describe any kind of uncertainty

about the begin or end of a period. It does not imply, for example, a fuzzy inter-

pretation of time. Open-ended intervals can be expressed by omitting begin or end

timestamps.

8 http://fofoca.mitre.org/
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Fig. 3 The properties of the Simple Event Model. Arrows with open arrow heads symbol-
ize rdfs:subPropertyOf properties. Dashed arrows symbolize subproperties of rdf:type; regular
arrows represent other properties.

There are two aggregation relations amongst the sem:eventProperty and sem:type

properties: sem:hasSubEvent (see the example in �gure 6) and sem:hasSubType. These

can be used to indicate that respectively a sem:Event or sem:Type is related to an-

other more generic sem:Event or sem:Type, without any further commitments. For

example, poseidon:anchored has sem:subTypeOf poseidon:stopped; and the sem:Event

instance ex:wimbledon 2010 mahut isner game 183 sem:subEventOf ex:wimbledon 2010 -

�rst-round match mahut isner. More speci�c relations between events and between types

are not part of SEM and should be taken from other ontologies, like GEM [27].

Constraints Property constraints can be applied to any property. They constrain the

validity of the property and are expressed as either a rei�cation of the property or

by adding attributes to the property and turning it into an n-ary relation. There are

three permissible ways to represent sem:Constraints: as a named graph, as a rei�cation

(with rdf:Statement, see http://www.w3.org/TR/rdf-schema/#ch_statement) and with an

rdf:value pattern (see http://www.w3.org/TR/2004/REC-rdf-primer-20040210/#example16).

The default representation is the rdf:value pattern, which is often used when represent-

ing the unit of measure of a value.9

9 cf. the MUO ontology https://forge.morfeo-project.org/wiki_en/index.php/How_to_
use_MUO
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There are three kinds of sem:Constraints: sem:Role, sem:Temporary and sem:View.

sem:Role de�nes the role that an individual of a class is playing in the context of a

speci�c event (i.e. to which it is linked with a sem:eventProperty). Roles can be speci�ed

for all sem:Core individuals, for example, Actors (\pusher" in the case of a Tugboat, or

\anchorman" in the case of a news item) as well as places (\destination"). sem:Roles are

not meant to model roles in the sense of temporary or dependent types, like \mother".

Instead, sem:Role explicitly models the event-bounded role. For example, a maritime

pilot is guiding ships through dangerous or congested waters, such as harbors or river

mouths. In the case of an event \Ship arriving in a harbor", the maritime pilot has the

role \guide", which is bounded to the sem:Event. sem:Temporary de�nes the temporal

boundary within which a property holds. For example, the ag or name of a ship can

change during its existence, independently from any event. sem:View de�nes points of

view, opinions: in the case of a collision, the description of the event might well depend

on the person who reports it. This can be modeled as a sem:View constraint on the

property sem:roleType, for example, if the responsibility (the actor's role) is contested.

A view holds sem:accordingTo a sem:Authority. Another example of the use of sem:View

is to distinguish the sources of two conicting ship positions for a ship at a given time.

Multiple kinds of sem:Constraints can be used in combination to create conjunctive

statements.

Availability and Extension SEM is available online at the URL: http://semanticweb.

cs.vu.nl/2009/11/sem/. It is mapped to a set of event models: Event Ontology [15];

CultureSampo [17]; Dublin Core10; CIDOC-CRM [6], and of commonly used upper

level ontologies: DOLCE [5]; SUMO11; and CYC12. This set of mappings has been

modeled in SKOS13.

3 Related Work

With respect to the semantic analysis of moving objects, comparable work has been

done by [14]. Their work mainly focuses on describing collective behavior in OWL, we

focus more on developing a framework for integrating external knowledge sources. Also,

we choose to use all of Prolog as our reasoning tool as opposed to an OWL reasoner.

With respect to event models, di�erent other models have been proposed to bridge

the gap between domain-level features and the semantic level. For example, the MPEG-

7 [12] Multimedia Description Scheme contains the two aspects. The model is complex,

though, and linking the low-level to semantics via MPEG-7 itself is hardly ever done.

The usual approach is to combine MPEG-7 with an ontology [10,22]. COMM [2] al-

lows combination of descriptions from MPEG-7 with a semantic description. In [2],

they take as example DOLCE [13] and its extension, the Description and Situation

pattern[5], to describe the semantics related to the low-level data described. COMM

leaves the choice of the semantic description model to the user. It provides a place

holder for semantic descriptions that can be �lled by either a single item (like a tag) or

a complex description, typically event models (as suggested in [10]). We adopted the

10 http://dublincore.org/
11 http://www.ontologyportal.org/
12 http://www.cyc.com/cyc/opencyc/
13 http://www.w3.org/2004/02/skos/
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same idea and designed SEM in the purpose of associating di�erent levels of semantics

to abstractions over low-level data. The event models that had the greatest inuence

on the development of SEM are: EO [15], CIDOC-CRM [6], LODE [19], and E [23].

Event models can be described through di�erent characteristics: concept-based

([10,6]) vs property based modeling ([15,19,17]); size (minimal number of classes and

properties like EO versus large ontology of CIDOC-CRM); level of axiomatization

(lightweight like EO versus more constrained model like LODE). SEM de�nes a set of

classes and properties to represent and reason about events, standing between concept-

based and property-based models. SEM is also average with respect to size, and it does

not import any restrictive semantics from other models. In particular, the links to other

models and ontologies are done with SKOS mappings in order to avoid inheriting con-

straints from these external resources.

We present here a more detailed overview of the relationships between SEM and

three RDF based event models. These models were selected as representatives of the

aforementioned overlapping categories: EO as a concept-based lightweight small on-

tology, LODE as a lightweight property based ontology with some restrictions and

CIDOC-CRM as a large concept-based ontology with no formal restriction. We dis-

cuss these models on basis of how they model (or not) the notions of Role, Type,

View and Temporary. These notions go beyond the most common components (event,

participant, time and place) and are part of our requirements.

3.1 EO

In the context of musical performances Queen Mary University of London developed

the Event Ontology14 (EO) [15]. EO has a very simple design. It consists of four

classes (eo:Event and three implicit classes which are the ranges of EO properties:

Agent, Factor and Product) and seventeen properties. EO de�nes a minimal event,

and relies on external vocabularies to re�ne the knowledge expressed. For example, no

Agent class is de�ned per se, but their eo:agent property has foaf:Agent as a range: EO

bene�ts therefore from the richness of the FOAF vocabulary.15 Roles, Types, Views

and Temporary are not de�ned in EO. Place, Time and Agent are de�ned via range

restrictions on EO's properties. The explicit linking to vocabularies brings EO its

richness, but also constrains the possible values for these properties. SEM is compatible

with more Place, Time and Actor representations, as we decided not to have such

restrictions. The main common point between SEM and EO is the modularity in the

design: most classes are optional in EO; In SEM, even the sem:Event class is optional.

This allows the representation of actors without events in which they participate. This

is useful when the di�erent parts of the event are gathered from di�erent sources, as

in our use case.

3.2 LODE

LODE [19] also aims at a minimal modeling of events. It contains one class (Event)

and six properties: lode:atTime, lode:circa, lode:inSpace, lode:atPlace, lode:involved and

14 http://motools.sourceforge.net/event/event.html
15 http://www.foaf-project.org/
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lode:involvedAgent. Both the class and the properties are formally mapped to other

event models like the CIDOC-CRM, EO and DOLCE's DUL version, by the use of

owl:sameAs and rdfs:subPropertyOf. In this way, interoperability is enabled and a user

can bene�t from existing more complex vocabularies, while LODE itself keeps its own

classes and properties at the lowest possible number. Role, Type and View can be

expressed via their mapping to DUL, by using the Description and Situation patterns,

or via the interpretation and mereology patterns of F [18].16 In SEM, we also adopt

the principle of using external vocabularies for modeling properties that are beyond

the model's scope, like the causality. But to the di�erence with LODE, we do not make

formal mappings, functional property restrictions and do not conform to one single

vocabulary for our properties. We do not bene�t from the other models or vocabularies

directly, but stay open to more diversity. The other vocabularies can be connected to

SEM via our placeholders for Role and Type. Time is expressed using the OWL Time

ontology17, in which temporal entities are represented instances, as opposed to data

values. This complicates the representation of time unnecessarily for our use case.

Another reason why we did not use LODE for this work is that, like EO, LODE does

not have explicit Actor and Place classes.

3.3 CIDOC-CRM

CIDOC-CRM [6] was created for describing museum artifacts, in the goal of enhancing

their exchange across musea. The whole model is quite large: it contains 140 classes and

144 properties. A subset of these can be used to represent events. Roles are represented

in the same fashion as in SEM: as constraints on a property. But unlike SEM, the Role

can only be assigned to the Actor. Types can apply to all entities of CIDOC-CRM, but

time-stamps (modeled with a two-position pattern) can only apply to TemporalEnti-

ties. Roles, Types and other event constituants cannot be time-stamped. We generalize

the CIDOC-CRM's model with SEM, and add the representation of View. The reason

why we did not use CIDOC-CRM for our use case is that it only allows one type per

object. This means that a ship can only have one type, but also that its behavior can

only have one type, which is too restrictive for this work.

3.4 Comparison

SEM gathers the elements that give a light-weight description of events, but without im-

porting strong semantic de�nitions that easily lead to inconsistency, e.g. owl:Functional-

Property, owl:disjointWith. In addition to this SEM speci�es the necessary additions for

dealing with heterogeneous and messy data from the web, i.e. foreign types, constraints,

and authority.

4 Use Case: Maritime Situational Awareness

We describe a Semantic Web application in which we automatically recognize events

from domain-level data representing ship trajectories. From these atomic events, mod-

16 F specializes D&S patterns from DUL.
17 http://www.w3.org/2006/time
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eled as SEM instances, we derive ship behavior types (slowing down, speeding up,

anchored) to reason about patterns, e.g. ship maneuvering when approaching an an-

chorage or a ferry trip. The reasoning involves various type of knowledge, which we

fetch from various sources. We describe these sources in section 4.1. We transform the

ship trajectories into segments of consistent movement using a piecewise linear segmen-

tation compression (PLS) algorithm. This gives us our low-level SEM event instances.

The PLS algorithm is described in section 4.2. We describe the conversion to SEM in

section 4.3 and the matching of ships and places to external resources that describe

them in section 4.4. The architecture of the system is shown in �gure 4. In section 4.5

we show how we make abstractions over and reason about the data sources that we

gather. We de�ne rules building on these basic blocks. These rules yield more com-

plex SEM events, like trips. Then we add relevant maritime geographical features from

GeoNames and de�ne further rules over these two sources of knowledge, that determine

higher-level events, like ferry trips and anchoring.

Reasoning Inter- 
pretation

Feature Recognition FeaturesData

Ship 
descriptions 
on the web 

(HTML)

MySQL
Database

D2RQ
RDF 

wrapper

Maritime 
Knowledgebase

(SWI-Prolog)

Semi-structured 
data wrapper

GeoNames on the 
web (RDF)

Behavior 
Classication 
(Prolog rules)

Track segments 
(SEM RDF)

Ship behavior  
(SEM RDF)

Ship descriptions 
(RDF)

Piecewise Linear 
Segmentation

AIS data
(NMEA)

Fig. 4 Data ow diagram of the entire ship behavior recognition system.

4.1 Data Sources

The main data source for ship trajectory data in our application comes from the Auto-

matic Identi�cation System (AIS)18. Each commercial vessel over 300 tons carries an

AIS transponder. This transponder sends updates at regular intervals (in the order of

seconds) about, among other things, the ship's location, speed over ground and course

over ground.

We use GeoNames as ontology of geographic data. We extended GeoNames with 64

harbors and anchorages and corrected the position of 36 existing harbors. GeoNames

is created collaboratively with a wiki where anybody can add and change features. The

RDF version of GeoNames is periodically generated automatically from the wiki data.

Ship information, like the callsign, ag, and owner, are fetched from various web-

sites: http://www.marinetraffic.com/, http://www.vesseltracker.com/, http://www.havenais.

com/, and http://www.xvas.it/. We use Marinetra�c.com as a baseline and extend it

with information from the other websites. During the course of the project Xvas.it re-

stricted its access policy. The information about ship types derived from these sources

18 http://www.uais.org/
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is converted to our own small internal actor type vocabulary, which is aligned to Word-

Net19 2.0 with SKOS properties.

4.2 From AIS Data to Segments of Consistent Movement

In this section we briey describe a method to automatically convert \raw" movement

data in the form of trajectories into SEM events that we call segments. This method

is based on a piecewise linear segmentation compression technique for trajectories.

The compression of single AIS messages into segments decreases the total number

of atomic events we have to deal with roughly by a factor 25, which makes further

processing signi�cantly faster. We detail this technique and describe how we use it to

create segment SEM events. These segments contain the parameters that Andrienko

and Andrienko [1] identify as the basic data for describing movements: the entity (via

an identi�er), the (geo)-coordinates where the event starts and stops and the time

when the start and stop occurs. Furthermore, these segments can easily be classi�ed as

stop or move. These concepts where recently identi�ed [21] as the �rst step in giving

semantics to moving object trajectories.

Trajectories We mentioned that the ship trajectory data in our application comes

from the Automatic Identi�cation System (AIS). Now, let us de�ne a trajectory more

formally as: T = f(x1; y1; v1; c1; t1); : : : ; (xn; yn; vn; cn; tn)g, where x and y are the

coordinates20, v the speed, and c the course at time t. As useful shorthands we also

de�ne: T (i) = (xi; yi; vi; ci; ti) and T (i; j) = f(xi; yi; vi; ci; ti); : : : ; (xj ; yj ; vj ; cj ; tj)g,
furthermore, T 0((xi; yi; vi; ci; ti)) = i.

As the trajectories are from ships, they describe movements of relatively large

objects. Such large objects are constrained in possible trajectories, e.g. large objects

do not jump around, nor turn and accelerate very fast. In a sense, this type of movement

data is highly regular and is quite predictable.

Piecewise Linear Segmentation The above mentioned regularity of the trajectories sug-

gests that they can be compressed quite well using piecewise linear representation tech-

niques. The idea behind using a piecewise linear representation method is that this

technique segments a trajectory into pieces which have more or less constant move-

ment. These segments of constant behavior are the lowest level SEM events and the

building blocks for more complex events.

We use a two-step variant of piecewise linear segmentation, described in algorithms

1 and 2. This two-step version, which �rst looks at the speed of a moving object

(algorithm 1) and then at the location (algorithm 2), is better at preserving the concepts

of stop and move that we mentioned above21.

First, we consider the standard piecewise linear segmentation algorithm given in 1

which is used twice in our two-step variant. This algorithm goes by many names [11].

It is best known as the Douglas-Peucker algorithm [7] in carthography and Ramer's

algorithm [16] in image processing. The algorithm recursively compresses a line, or in

19 http://www.w3.org/TR/wordnet-rdf/
20 Usually these are latitude and longitude, which, because of the shape of the earth, do not
allow for easy geometrical computations. However we assume here that we can do this, e.g.
because they are adequately projected.
21 We will explore this issue more in a future paper.
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our case a trajectory T , de�ned as a list of points, into linear segments. The start and

end point of the line or trajectory are selected and for each point in between, the error

with respect to the linear interpolation between the start and end point is computed.

The point with the maximum error, higher than a �xed threshold � is kept and the

recursion continues with that point as a new start and end point. Recursion stops when

there is no point with an error higher than �.

Algorithm 1 pls(T; �)

1 We use end to indicate the index of the last element of a trajectory.
2 dmax = 0
3 imax = 0
4 for i = 2 to end � 1 do

5 d = E(T (i); fT (1); T (end)g)
6 if d > dmax then

7 imax = i

8 dmax = d

9 end

10 end

11 if dmax � � then

12 A = pls(T (1; imax ); �)
13 B = pls(T (imax ; end); �)
14 TC = fA;B(2; end)g
15 else

16 TC = fT (1); T (end)g
17 end

18 return TC

There are a number of options for the error function (algorithm 1, line 5) that

piecewise linear segmentation can use, especially when considering trajectories (cf. [3,

9]). We only use two. The �rst one is simple two dimensional euclidean distance, de�ned

for our trajectories as:

E2((xi; yi; vi; ci; ti); f(x1; y1; v1; c1; t1); (xn; yn; vn; cn; tn)g)
=
q
(xi � x0

i)
2 + (yi � y0

i)
2;

where (x0

i; y
0

i) is the closest point on the line-segment f(x1; y1); (xn; yn)g. (1)

The second one is de�ned on the speed attribute. Here we compare the speed at

a certain time ti to the speed that we would get if we linearly interpolate between t1
and tn at the same ti.

Ev((xi; yi; vi; ci; ti); f(x1; y1; v1; c1; t1); (xn; yn; vn; cn; tn)g = kvi � v0

ik
where v0

i is the point on the line-segment f(v1; t1); (vn; tn)g with time ti. (2)

In our two-step variant of piecewise linear segmentation, given in algorithm 2, we

apply algorithm 1 to a trajectory in two steps. First we only compress based on the

speed (v) of the trajectory (line 1 of algorithm 2). In this case we use the error function

Ev. Then we apply compression to each segment created in the �rst compression step

(line 6 of algorithm 2), but we look at location22, which only takes into account x and

y. Here we use the error function E2.

22 This is the traditional Douglas-Peucker algorithm.
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Algorithm 2 2step-pls(T ,�v,�p)

1 A = pls(T; �v)
2 TC = ;
3 for i = 1 to kV Ck � 1 do

4 m = T 0(A(i))
5 n = T 0(A(i+ 1))
6 B = pls(T (m;n); �p)
7 TC = TC [B

8 end

9 return TC

Storing the Segments The result of the two-step piecewise linear segmentation, de-

scribed above, is stored in an SQL-database in the table segments, see �gure 4. A

segment describes a constant piece of movement. Let T be a trajectory as de�ned

earlier, then TC is its compressed variant: TC = 2step-pls(T; �v; �p).

Now, we insert the following tuples into the segments table:

huri; xi; yi; xi+1; yi+1; vi; vi+1; ci; ci+1; ti; ti+1i
for all i such that TC(i) = (xi; yi; vi; ci; ti)

and TC(i+ 1) = (xi+1; yi+1; vi+1; ci+1; ti+1). (3)

For each segment we generate a URI based on the ship's unique identi�er, the Maritime

Mobile Service Identity (MMSI) number, and the start time (ti). This URI uniquely

identi�es the segment. Furthermore, the segment contains a start (xi; yi) and end

(xi+1; yi+1) position, a start (vi) and end (vi+1) speed, a start (ci) and end (ci+1)

course, and a start (ti) and end (ti+1) time.

4.3 From Segments to Semantics

Segments as Events in SEM Every segment in the database is assigned either the two

basic movement types stop or move. These are stored in an additional column in the

MySQL database. Stops are determined by means of a threshold23 on the average speed

of the segment. All additional semantics are described outside of the database, in RDF.

To make the transition from the database to RDF we use the D2RQ server24 by the

Free University Berlin. This is a database wrapper that provides an RDF graph view

over the at database table we use to store the segments, see �gure 4. Each segment

(c.q. row in the database) corresponds to a single instance of a sem:Event, with an ad-

ditional sem:eventType poseidon:etype stopped or poseidon:etype moving depending on

the basic movement type of the segment. Also, each segment describes the state of a

single ship, identi�ed by its MMSI number, which corresponds to a single instance of

a sem:Actor, which is connected to the segment event by the sem:hasActor property.

The ship gets a ais:mmsi property to the value of its MMSI number. Additional prop-

erties of the ship that are fetched from the web are added later as properties of the

instance representing the ship. The begin place and end place are represented as two

instances of sem:Place, which are connected to the event by the seg:hasBeginPlace and

23 In the order of 0:1 knots.
24 http://www4.wiwiss.fu-berlin.de/bizer/d2rq/
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sem:Actor

sem:ActorType

sem:actorType

rdf:type

rdf:type

sem:hasActorex:Stena 
Hollandica

sem:PlaceType

geo:H.HBR

rdf:type

wordnet:ferry-1

sem:Place

sem:placeType

"harbor"skos:prefLabel

sem:EventType

sem:Event

ex:departure_x

rdf:type rdf:type

geo:7116094seg:has
BeginPlace

wordnet:depart-3

"lat"wgs84:lat

wgs84:long
"long"

2009-12-07
T24:45:00Z

sem:hasBegin
TimeStamp

sem:eventType

rdf:type

"Harwich 
International 

Ferry Terminal"

geo:name

Fig. 5 An example of an event describing the departure of a ferry from Harwich. Segment
events initially do not have a meaningful place, only an anonymous place (c.q. blank node)
with coordinates. The meaningful place shown in this example is attached to the event by
conating it to the anonymous place of the segment by means of spatial proximity reasoning.

sem:hasSubEvent
inferred from
time series of
place types

space_within_range

ex:segment_x2
sem:

eventType

rdf:type

wordnet:
move-4

sem:Actor sem:ActorType

sem:actorType
inferred from being

the actor of a 
ferry trip

rdf:type rdf:type

sem:hasActor

ex:Stena 
Hollandica

sem:PlaceType

geo:H.HBR

rdf:type

2009-12-08T07:45:00+01:00
wordnet:
ferry-1

sem:Place

rdf:type

seg:has
EndPlace ex:place_x3

sem:hasEndTimeStamp

sem:
placeType

"harbor"

skos:prefLabel

ex:trip_x1

sem:EventType

sem:
eventType rdf:typewordnet:

trip-1 sem:Event

ex:departure_x4

rdf:type rdf:type

geo:7116094seg:has
BeginPlace

wordnet:
depart-3

"lat1"wgs84:lat

wgs84:long "long1"

2009-12-07T24:45:00+00:00

sem:hasBeginTimeStamp

rdf:type geo:7116101

"lat2"

wgs84:lat

"long2"

sem:placeType

sem:
eventType

rdf:type
seg:hasEndPlace
spatially inferred

by proximity

rdf:typewordnet:
passenger_ship-1

sem:actorType

wgs84:long

"Harwich 
International 

Ferry Terminal"

geo:name

Fig. 6 An example of two subevents of a ferry trip, an arrival (ex:segment x2) and a departure
(ex:departure x4). This example shows the seg:hasEndPlace property instance that is inferred
by conation of places. For the sake of readability not all properties and inferences are shown.

seg:hasEndPlace properties, subproperties of sem:hasPlace. We attach the additional

properties like begin and end speed to the event instance by segment-speci�c proper-

ties like seg:hasBeginSpeedOverGround. An example of the RDF generated in this way

is shown in �gure 7. A simple illustration of the structure of the resulting RDF graph

is shown in �gure 5 and an elaborate example in �gure 6.
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4.4 Conation of Places and Actors

Matching Places To classify the places at which events happen we use GeoNames

Features. We relate the location of anonymous places (see line number 7 to 12 in

�gure 7) indicated with wgs84:lat and wgs84:long in the RDF representation of the

segments to the typed places in GeoNames by geographical proximity reasoning using

the Haversine distance function:

d = R � 2 arctan2(pa;
p
1� a)

a = sin2(�lat=2) + cos(lat1) � cos(lat2) � sin2(�long=2)

where R = the earth's radius, �lat is the di�erence in latitude and �long is the di�erence

in longitude. Using the SWI-Prolog Space Package, based on an R*-tree implementa-

tion from the spatialindex package25, we can e�ciently derive whether a ship is lying

still in a harbor, perhaps moored, or at an o�shore anchorage or just somewhere out at

sea. GeoNames associates instances of places with geo-coordinates to GeoNames fea-

ture codes like geo:H.HBR (harbor), and geo:H.ANCH (anchorage). The Space Package

derives that the coordinates of a given segments are close to coordinates de�ned in

GeoNames, and further reasoning can then use the associated semantic type to re�ne

the classi�cation of a ship's behavior: a segment typed as poseidon:etype stopped and

for which the place of stop has the type geo:H.HBR, gets the additional sem:eventType

poseidon:etype stopped in harbor. The spatial conation is illustrated in �gure 6 and in

the code example in �gure 8 on line 4{8.

Matching Actors We automatically convert the information about ships described in

the various websites mentioned in section 4.1 to RDF properties of the ships (Actors in

SEM). Amongst these properties are datatype properties like ais:length and ais:callsign,

but also types, like passenger vessel, which we map to our local vocabulary that

is aligned to WordNet. In this case, passenger vessel would be translated to posei-

don:atype passenger vessel, which is aligned to wordnet:synset-passenger ship-noun-1. This

is illustrated in �gure 7 on line 20.

4.5 Deriving Complex SEM Events

To derive more complex behavior than the simple poseidon:etype (stoppedjmoving)

events we de�ned a set of rules that build on the typed segment event. For example,

to derive the complex behavior \trip" we use a rule that is based on the assumption

that if we do not know about an explicit stop between consecutive moving events that

it does not exist, i.e. we temporarily make a closed world assumption. This allows us

to deal with missing ship observations (which happens frequently). We conclude that

if we do not know about any stop at a harbor between two stops at harbors a and b,

that there was a trip between harbor a and b. This is shown in line 14{21 of �gure 8.

We encode this trip as a new event, which sem:hasSubEvent the segments that compose

the trip. This is shown in line 32{50 of �gure 9. The harbors of departure and arrival,

a and b, become seg:has(BeginjEnd)Place properties of the new trip event.

When the RDF describing trip events has been added to the knowledgebase we

can use it as a new layer on which we can build new rules. For example, we can de�ne

25 http://trac.gispython.org/spatialindex/
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a ferry trip as a trip back and forth between two di�erent harbors, see line 23{30 of

�gure 8. The ferry trips recognized in this way can subsequently be inserted into the

knowledgebase as new events, like the trips, but not referring to segments anymore.

The trip and the return trip composing the ferry trip become subevents of the event

representing the ferry trip. This is described on line 54{66 of �gure 9.

An important advantage of storing the intermediate results of all the rules at various

layers of abstraction is that it does not matter in which way the RDF representing an

event was generated. For example, as long as its subevents exist we can derive ferry

trips. This means that some trips could be derived from AIS segments, like discussed

before, while others could be derived from another source, like radar, text mining on a

ferry schedule on the web, or even manual extension or correction of the knowledgebase.

1 poseidon:segment_mmsi _timestamp a sem:Event ;
2 sem:eventType seg:AISsegment ;
3 % low-level behavior semantics
4 sem:eventType poseidon:etype_departing ;
5 % high-level behavior semantics
6 sem:subEventOf poseidon:ferry_trip_mmsi _n ;
7 seg:hasBeginPlace [
8 a sem:Place ;
9 % classified as a harbor due to proximity to

10 % geoi:7116101, see line number 26
11 wgs84:lat "51.9762" ; wgs84:long "4.1245" ;
12 ] ;
13 sem:hasBeginTimeStamp "<timex2object>
14 <timex2 VAL="2008-08-04T03:00">
15 2008-08-04T03:00+01:00
16 </timex2object>"^^rdf:XMLLiteral ;
17 sem:hasActor poseidon:actor_ship_mmsi .
18

19 poseidon:actor_ship_mmsi a sem:Actor ;
20 sem:actorType poseidon:atype_passenger_vessel ;
21 ais:name "USS Enterprise" ;
22 ... ;
23 ais:mmsi "mmsi " .
24

25 # matched to the segment location by proximity
26 geoi:7116101 a geo:Feature ;
27 geo:name "Berghaven" ;
28 geo:parentFeature geoi:7116101 ;
29 wgs84:lat "51.97697" ; wgs84:long "4.12401" ;
30 ... ;
31 geo:featureCode geo:H.HBR .

Fig. 7 A ship behavior segment modeled in SEM. Line 1{23 illustrates the SEM RDF format of
segment events that is provided by the D2RQ database wrapper. Line 26{31 shows a GeoNames
Feature that was conated with the sem:Place of the event. In this case, the ship is at a harbor.

5 Conclusion and Future Work

We learn event instances from raw data: AIS transceivers transmitting information

about ship navigation parameters. To recognize simple behavior events from these
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1 stopped_at(Seg, Near, FeatureCode) :-
2 rdfs_individual_of(Seg, poseidon:etype_stopped), % from the database
3 rdf(Seg, sem:hasPlace, Loc),
4 space_nearest_bounded(Loc, Near, 0.15),
5 rdf(Near, geo:featureCode, FeatureCode),
6 ( rdf_equal(geo:'H.HBR', FeatureCode)
7 ; rdf_equal(geo:'H.ANCH', FeatureCode)
8 ).
9

10 stopped_at_harbor(Seg, Hbr) :-
11 rdf_equal(geo:'H.HBR', HarborCode),
12 stopped_at(Seg, Hbr, HarborCode).
13

14 trip(FromSeg, FromHarbor, ToSeg, ToHarbor) :-
15 stopped_at_harbor(FromSeg, FromHarbor),
16 % fetches all movement segments of the ship between FromSeg and ToSeg
17 % and checks that these are not known to be stops at some harbor
18 segments_between(FromSeg, ToSeg, Between),
19 forall(member(Seg, Between),
20 \+stopped_at_harbor(Seg,_)),
21 stopped_at_harbor(ToSeg, ToHarbor).
22

23 ferry_trip(Trip, ReturnTrip) :-
24 rdfs_individual_of(Trip, poseidon:etype_trip),
25 rdf(Trip, seg:hasBeginPlace, HarborA),
26 rdf(Trip, seg:hasEndPlace, HarborB),
27 rdfs_individual_of(ReturnTrip, poseidon:etype_trip),
28 rdf(ReturnTrip, seg:hasBeginPlace, HarborB),
29 rdf(ReturnTrip, seg:hasEndPlace, HarborA),
30 HarborA \= HarborB.

Fig. 8 First part of a code example illustrating how we use SWI-Prolog rules to derive simple
(stopped) and complex (ferry trip) event types from low-level segment events in SEM RDF
format. The example is continued in �gure 9. The rules shown in this �gure show how you can
de�ne the behavior of \stopping", \stopping at a harbor", \trip", and making a \ferry trip".
The actual assertion of the RDF statements that classify the behavior exhibited in segments
is shown in �gure 9.

sensor data, we use a compression algorithm, Piecewise Linear Segmentation. This

decreases the number of atomic events we have to deal with roughly by a factor 25,

which greatly improves the processing speed of the rest of our system. We represent the

di�erent facets of behavior events, when (sem:hasTimeStamp) did who (sem:Actor) do

what (sem:Event), where (sem:Place), in the Simple Event Model. We combine spatial

reasoning, semantic web reasoning and rules in SWI-Prolog to create new, higher-

level, events on top of the recognized movement patterns. This allows representation

of events at di�erent levels of abstraction. We keep the link between the di�erent

layers of semantics, information and data that come from very di�erent applications

(machine learning and text mining). We syndicate the output of the applications in a

single event representation. Our event model also enables the combination of events

with other background knowledge. The integration happens at the knowledge level.

Abstraction, syndication and the integration with background knowledge are part of

the requirements for a relevant Event Model for Multimedia de�ned by [24]. The au-

thor emphasises one drawback of current models: \Although event detection on various

abstraction levels and for di�erent domains is a central topic in content analysis, the

focus has mostly been on the use of content features for detecting events within media
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32 % semantic classification of trip behavior
33 % (complex event consisting of simple events)
34 classify_trip_behavior :-
35 % find instances of trips with trip/2
36 findall(trip(From, FromHarbor, To, ToHarbor),
37 trip(From, FromHarbor, To, ToHarbor),
38 Trips),
39 Trips \= [],
40 % define ferry trip event
41 forall(member(trip(From, FromHarbor, To, ToHarbor), Trips),
42 rdf_bnode(Trip),
43 rdf_assert(Trip, rdf:type, poseidon:etype_trip),
44 rdf_assert(Trip, seg:hasBeginPlace, FromHarbor),
45 rdf_assert(Trip, seg:hasEndPlace, ToHarbor),
46 % make intermediate segments part of the trip
47 ( segments_between(From , To, Between),
48 forall(member(Seg, Between),
49 rdf_assert(Trip, sem:hasSubEvent, Seg))
50 )).
51

52 % semantic classification of ferry trip behavior
53 % (complex event consisting of complex events)
54 classify_ferry_trip_behavior :-
55 findall(ferry_trip(Trip, ReturnTrip, HarborA, HarborB),
56 ( ferry_trip(Trip, ReturnTrip),
57 rdf(Trip, seg:hasBeginPlace, HarborA),
58 rdf(Trip, seg:hasEndPlace, HarborB)
59 ),
60 FerryTrips),
61 FerryTrips \= [],
62 forall(member(trip(From, FromHarbor, To, ToHarbor), Trips),
63 rdf_bnode(FerryTrip),
64 rdf_assert(FerryTrip, rdf:type, poseidon:etype_ferry_trip),
65 rdf_assert(FerryTrip, sem:hasSubEvent, Trip),
66 rdf_assert(FerryTrip, sem:hasSubEvent, ReturnTrip)).

Fig. 9 Second part of a code example illustrating how we use SWI-Prolog rules to derive
complex event types (regular trips and ferry trips) from low-level segment events in SEM RDF
format. The �rst part of this example is shown in �gure 8. The rules shown in this �gure show
how the RDF assertions are made that classify the behavior exhibited in movement segments.

and less on the modeling of the detected events or their use for detection of higher-level

events. Thus, event models applied in multimedia content analysis, if made at all ex-

plicit, typically lack media independence: : :" SEM addresses this by modeling events

independently from the data.

In the future SEM will be used as a basic schema supported by the Semantic

Search Engine ClioPatria26 [25]. SEM will also be used in completely di�erent domains

than maritime safety, e.g. in Cultural Heritage and historical applications. In these

domains SEM can also be used to bridge the gap between data (low-level object and fact

descriptions) and semantics at the level of human queries by o�ering a new conceptual

event-based semantic description. Although SEM, as an event model, does not provide

all of the steps necessary for bridging the semantic gap (part of the bridging is done

by signal processing and rules linking the di�erent levels of abstraction together), it is

26 http://e-culture.multimedian.nl/software/ClioPatria.shtml
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at the core of the process: a unique interface for the representation of heterogeneous

data, that allows for a uni�ed reasoning.

As future work, we would like to extend the SWI-Prolog Space Package to deal

with moving object indexing. This would allow us to write e�cient rules about the

relative position of moving ships with respect to each other. Currently, this is not

possible, as we use an R*-tree which can not natively deal with time-parametrized

geometries. We would like to extend the web information extraction toolkit we use

to �nd ship information to �nd more properties of ships so that we can extend the

range of queries we can formulate about ships (banned ships, historical records, etc.).

A future challenge is to move from only using existing place features like harbors to also

using automatically discovered points of interest, like uno�cial ship lanes or queues for

tankers in front of a harbor.
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