
Research Articletgis_1187 131..146

The Space Package: Tight Integration
between Space and Semantics

Willem Robert van Hage
Department of Computer Science
Vrije Universiteit Amsterdam

Jan Wielemaker
Department of Computer Science
Vrije Universiteit Amsterdam

Guus Schreiber
Department of Computer Science
Vrije Universiteit Amsterdam

Abstract
Interpretation of spatial features often requires combined reasoning over geometry
and semantics. We introduce the Space package, an open source SWI-Prolog exten-
sion that provides spatial indexing capabilities. Together with the existing semantic
web reasoning capabilities of SWI-Prolog, this allows efficient integration of spatial
and semantic queries and provides an infrastructure for declarative programming
with space and semantics. There are few systems that provide indexing and reason-
ing facilities for both spatial and semantic data. A common solution is to combine
separate semantic reasoning and geospatial services. Such loose coupling has the
disadvantage that each service cannot make use of the statistics of the other. This
makes optimization of such a service-oriented architecture hard. The SWI-Prolog
Space and Semantic web packages provide a native Prolog interface to both spatial
and semantic indexing and reasoning, which makes it easy to write combined query
optimizers. Another advantage of the Space package is that it allows declarative logic
programming, which means in practice that you say what you want to compute
instead of how to compute it. The actual indexing machinery is encapsulated inside
Prolog predicates. In this article we describe the interface of the Space package,
compare its functionality to alternative software libraries, and show how to work
with it using three example applications. These example illustrations include rea-
soning over movement patterns, dynamically loading geospatial linked data off the
semantic web, and setting up a simple KML server.

Address for correspondence: Willem Robert van Hage, Vrije Universiteit Amsterdam, de Boelelaan
1081a, 1081HV Amsterdam, The Netherlands. E-mail: wrvhage@few.vu.nl

Transactions in GIS, 2010, 14(2): 131–146

© 2010 Blackwell Publishing Ltd
doi: 10.1111/j.1467-9671.2010.01187.x

1 Introduction

Geographical Information Systems have been used successfully to analyze spatial concepts
for about five decades. The use of ontologies in such analyses is a relatively recent
development (cf. Bernard et al. 2003, Fonseca and Egenhofer 1999, Kolas et al. 2005). A
limitation of current state-of-the-art GISs is that they do not support semantics. Most GISs
use local identifiers for features as opposed to global URIs. Information about the features
is usually stored with “flat” attribute-value pairs. Most GISs do not natively support
hierarchical typing of features, property hierarchies, or rules. On the other hand, most
semantic reasoning systems support very little “concrete domain” reasoning, with support
limited to logical inference. Complex analysis of spatial concepts, such as the interpreta-
tion of moving object behavior (Orellana and Renso 2010, Orellana et al. 2009), or the
classification of terraced houses based on their relative position (Lüscher et al. 2009),
requires software that can deal with both the spatial and semantic aspects of features.

This article presents an infrastructure to reason declaratively over spatial objects. We
introduce the Space package, a module for SWI-Prolog that provides spatial indexing.
More information about the package can be found at http://www.SWI-Prolog.org/pldoc/
package/space.html and the source code itself can be downloaded from the GIT reposi-
tory at http://www.SWI-Prolog.org/git/space.git (or git://www.swi-prolog.org/home/pl/
git/space.git).

In Section 2 we will discuss the motivation for this work. In Section 3 we compare
the Space package to related work. In Section 4 we will describe the interface of the Space
package in detail. In Section 5 we will describe the architecture of the package and
technical implementation issues. In Section 6 we give an indication of the performance of
the system. In Section 7 we describe application examples. In Section 8 we discuss future
work related to the Space package and in Section 9 we wrap up with some conclusions.

2 Logic Programming and Spatial Reasoning

The goal of our work is to provide an infrastructure for declarative programming over
both space and semantics. We choose to do this in SWI-Prolog, because it provides a fast
declarative rule-based reasoning platform that provides smooth integration to a general-
purpose programming language (Liang et al. 2008), and because of its support of
semantic web technology (Wielemaker et al. 2008). However, it does not provide support
for geometric operations and spatial indexing. For these two tasks we use external
libraries, respectively Geometry Engine Open Source (GEOS; see http://geos.
refractions.net/ for additional details) and the Spatial Index Library (Hadjieleftheriou
et al. 2005; see http://trac.gispython.org/spatialindex/ for additional details). We had to
take the following important decision when designing the Space package:

1. We had to decide at which level of abstraction we make our declarative interface.
Some things are easier to write declaratively (e.g. symbolic spatial reasoning, like
Region Connection Calculus (RCC-8; Bennett et al. 1998), while other things are
easier to write imperatively. In section 4 we will describe the interface we chose and
motivate our decisions.

2. We had to decide how profound the integration between spatial and semantic
constructs should be. There are many possible degrees of integration. On one side of

132 W R van Hage, J Wielemaker and G Schreiber

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(2)

the spectrum it would have been possible to wrap existing GISs as a service or with
a database wrapper and disclose this to the remainder of Prolog through a declara-
tive interface. On the other side, it would have been possible to write a basic GIS in
Prolog. It is very hard to write an efficient query optimizer on a loosely coupled
system that combines two different kinds of indices. We decided on an interface that
allows us to reuse existing libraries, while still allowing tight enough integration to
be able to write query optimization routines that use properties of both the spatial
and the semantic index.

3. We had to bridge the gap between spatial databases and geometric operations on one
side and pure Prolog predicates on the other in some way. Pure Prolog predicates
should always have the same behavior, regardless of the instantiation order deter-
mined by the program context. They work though unification of variable arguments,
not by side effects like destructive assignment. In section 5 we discuss the implemen-
tation issues of spatial queries as pure prolog predicates.

3 Related Work

The three systems that are most similar to the Space package are: Franz Inc.’s Alle-
groGraph (http://www.franz.com/agraph/); the Jena (McBride 2002) extension Geospa-
tialweb (see http://code.google.com/p/geospatialweb/ and http://geosparql.appspot.com/
for additional details); and the framework built around Jena and PostGIS by Lüscher
and colleagues (see http://www.dagstuhl.de/Materials/Files/09/09161/09161.Luescher
Patrick.Slides.pdf for additional details) for the classification of types of houses (Lüscher
et al. (2009).

AllegroGraph and SWI-Prolog have native RDF and RDFS++ (Allemang and
Hendler 2008) support, and use a DIG interface for interfacing with an external DL
reasoner (Wielemaker et al. 2008). Geospatialweb uses Jena for storage, which also uses
an external system for DL reasoning. AllegroGraph is built on the Allegro Common Lisp
system, which also has Prolog rule support. Jena has a forward chaining rule reasoner
(see http://jena.hp.com/juc2006/proceedings/reynolds/rules-slides.ppt for additional
details). AllegroGraph uses grids to index points. All points in a grid cell are evaluated
against the query. The user can specify the granularity of the grid. It is hard to compare
the performance of this indexing method to R-Trees, which tune themselves to the spatial
distribution of the data. For arbitrarily distributed data R-Trees are faster at query time
and grids are faster at indexing time.

The greatest functional difference between the Space package and AllegroGraph is
that in AllegroGraph shapes are either encoded in a URI by a naming convention or they
are lists of coordinates. Either way, they are not typed structures. In addition, Alle-
groGraph only supports polygons as queries, not as indexable objects and it does not
support nearest neighbor queries.

Geospatialweb does support nearest neighbor queries, but only on points. It does not
support any other type of shapes. These points are directly derived from W3C WGS84
lat and long properties in RDF. They are not first class citizens like in the Space
package. Transformations of shapes are not possible.

The system by Lüscher et al. (2009) uses PostGIS, which is a more powerful spatial
query system than the Spatial Index Library used by the Space package. PostGIS uses
Generalized Search Trees for spatial indexing and supports all major GIS standards for

The Space Package: Tight Integration between Space and Semantics 133

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(2)

input and output. However, as opposed to the Space package, it loosely couples space
and semantics. This makes it hard to control the performance of complex queries in such
a system, because the two separate engines each have their own query optimizers that are
unable to anticipate based on each other’s statistics. For nearest neighbor queries this is
more relevant than for containment and intersection queries, because nearest neighbor
queries are potentially unbounded in space. For example, consider the query “Find the
nearest Chinese restaurant that serves vegetarian dishes.” The spatial database knows the
heuristics about where the nearest features are. Perhaps it even knows where the nearest
restaurants are if there is an attribute: value pair type: restaurant, but the nearest
restaurant matching the two very different complex semantic constraints ChineseRes-
taurant ¢ $serves.VegetarianDish could very well be on the other side of the Earth even
though there are many nearby restaurants. The spatial index has no access to heuristics
about semantics, while an RDF store would have this information, but would be unable
to efficiently determine which of the matching individuals is near to the query shape.

Table 1 gives an overview of the capabilities of the space package and the software
tools mentioned above.

4 The Space Package Interface

The interface of the Space package was designed to make declarative multimodal state-
ments easy to write. For example, “Scientists born near Amsterdam”, using the DBpedia
data set looks like:

scientist_born_near_amsterdam(Scientist, BirthPlace) :-
rdfs_individual_of(Scientist, db:’Scientist’),
rdf(Scientist, dbp:birthPlace, BirthPlace),
uri_shape(AmsterdamURI, AmsterdamShape),
space_nearest(AmsterdamShape, BirthPlace).

4.1 Shapes as Prolog Terms

The central objects of the Space package are pairs, 〈u, s〉 of a URI, u, and its associated
shape, s. The URIs are linked to the shapes with the uri_shape/2 predicate. This is

Table 1 Comparison between the functionality of the Space package and related
software

tool name index type reasoning geometry types query types

Space package R*-tree RDFS, DIG points, lines,
polygons

INN, intersection,
contains, range

AllegroGraph grid(s) RDFS, DIG points (polygon
queries)

contains, range

PostGIS GiST – all OpenGIS SFS KNN, intersection,
contains, range

Geospatialweb R*-tree OWL, DIG points KNN, range

134 W R van Hage, J Wielemaker and G Schreiber

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(2)

illustrated in Figure 1. We will support all OpenGIS Simple Features, points, linestrings,
polygons (with �0 holes), multi-points, multi-polygons, and geometry collections; and
some utility shapes like box and circle regions.1

Both the URIs and the shapes are represented as Prolog terms. This makes them
first-class Prolog citizens, which allows the construction and transformation of shapes
using regular Prolog clauses, or Definite Clause Grammars (DCGs). We support input
from locations encoded in RDF with the W3C WGS84 vocabulary (http://www.w3.org/
2003/01/geo) and with the GeoRSS Simple properties and the GeoRSS where property
leading to an XML literal consisting of a GML element (cf. http://georss.org/). The
uri_shape/2 predicate searches for URI-Shape pairs in SWI-Prolog’s RDF triple store.
It matches URIs to Shapes by using WGS84 and GeoRSS properties. For example, a URI
u is associated with the shape s = point(lat,long) if the triple store contains the triples:
〈u, wgs84_pos:lat, lat〉 and 〈u, wgs84_pos:long, long〉; or when it contains one of
the following triples: 〈u, georss:point, “lat long”〉 or 〈u, georss:where,
“<gml:Point><gml:pos> lat long </gml:pos></gml:Point>”〉. The XML literal
containing the GML description of the geometric shape is parsed with a DCG that can
also be used to generate GML from Prolog shape terms. By allowing the shapes to be
formulated as XML literals we can leave the specification of many issues, like various
coordinate spaces, to GML. Also, it makes it possible to extend the system in the future
with other relevant XML Schemas, like CityGML.

4.2 Adding, Removing, and Bulkloading Shapes

The spatial index can be modified in two ways: By inserting or retracting single URI-
shape pairs respectively using the space_assert/3, or the space_retract/3 predi-
cate; or by loading many pairs at once using the space_bulkload/2 predicate or its
parameterless counterpart space_index_all/0 which simply loads all the shapes it
can find with the uri_shape/2 predicate into the default index. The former method is
best for small manipulations of indices, while the latter method is best for the loading of
large numbers of URI-shape pairs into an index. The Space package can deal with
multiple indices to make it possible to divide sets of features. Indices are identified with
a name handle, which can be any Prolog atom.2 The actual indexing of the shapes is

Figure 1 Examples of supported shapes that can be used both as data and queries in
Space package version 0.1.2. Shapes are associated to a URI by the uri_shape/2 predi-
cate and verified with the shape/1 predicate

The Space Package: Tight Integration between Space and Semantics 135

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(2)

performed using lazy evaluation (i.e. indexing is delayed as long as possible). Assertions
and retractions are put on a queue that belongs to an index. The queue is committed to
the index whenever a query is performed, or when a different kind of modification is
called for (i.e. when the queue contains assertions and a retraction is requested or vice
versa). Index modification operations are illustrated in Figure 2. An indication of the
performance of bulkloading (Figure 3) and single assertions is given in Figure 11.

4.3 Query Types

We chose the three most common spatial query types as our basic building
blocks: containment, intersection, and nearest neighbor. These three query types
are implemented as pure Prolog predicates, respectively space_contains/3,
space_intersects/3, and space_nearest/3. These predicates work completely
analogously, taking an index handle and a query shape to retrieve the URI of a shape
matching the query, which is bound to the second argument. Any successive calls to the
predicate try to re-instantiate the second argument with a different matching URI. This
is illustrated in Figure 4. The results of containment and intersection queries are instan-
tiated in no particular order, while the nearest neighbor results are instantiated in order
of increasing distance to the query shape. The space_nearest_bounded/4 predicate
is a containment query based on space_nearest/3, which returns objects within a
certain range of the query shape in order of increasing distance. An indication of the
performance of nearest neighbor queries is given in Figure 11.

Figure 2 The space_assert/3 and space_retract/3 predicates put modifications
to the index in a queue that is processed by space_index/1 before the execution of a
query on the index (lazy evaluation). ex:myoffice is a QName using an example
namespace

Figure 3 Bulkloading is accomplished with the space_bulkload/2 predicate, which
creates a new index of all URI-Shape pairs it can find with the supplied predicate. In this
example we use the uri_shape/2 predicate from the space module to find candidates
for indexing

136 W R van Hage, J Wielemaker and G Schreiber

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(2)

4.4 Importing and Exporting Shapes

Besides supporting input from RDF we support input and output for other standards,
like GML (http://www.opengeospatial.org/standards/gml), KML (http://code.google.
com/apis/kml/) and WKT (http://en.wikipedia.org/wiki/Well-known_text). All shapes
can be converted from and to these standards with the gml_shape/2,
kml_shape/2, and wkt_shape/2 predicates. An illustration of this is shown in
Figure 5.

In addition to standard shape input and output predicates, the Space package
offers some extra facilities for dealing with KML. You can render KML files from
loaded URI-Shape pairs with the kml_save_header/2, kml_save_shape/3, and
kml_save_footer/1 predicates. This makes it possible to set up a KML server on
top of the Space package with a few lines of code. This is illustrated in Figure 14. In
addition, you can load URI-Shape pairs directly from KML files if the KML Geometry
elements have an XML ID attribute. For example, the KML snippet <Point
ID=“http://example.org/x”><coordinates>1.0 2.0</coordinates></Point> is
transformed into the URI-Shape pair uri_shape(‘http://example.org/x’,
point(1.0,2.0)). This is accomplished by passing the kml_file_uri_shape/3 predi-
cate to space_bulkload/2 as a closure with the first argument bound to the KML
file name and the second and third arguments as free variables. This is illustrated in
Figure 6.

Figure 4 Three types of queries: containment, intersection, and incremental nearest
neighbor. All query types return one value, a URI, at a time. There exist short notations
of these predicates with arity two that automatically use the default index

Figure 5 Converting a WKT geometry object into a Prolog shape term, and converting
it to GML and KML. The conversion can be accomplished in any direction between these
formats using the same predicates with different variables instantiated

The Space Package: Tight Integration between Space and Semantics 137

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(2)

4.5 Integration of Space and Semantics

The non-deterministic implementation of the queries makes them behave like a lazy
stream of solutions. (i.e. computation to find results is delayed until a result is explicitly
requested and if only one result is requested then the computation to find additional
results is never performed). This allows tight integration with other types of reasoning,
like RDF(S) reasoning or other Prolog rules. An example of combined RDFS and spatial
reasoning is shown in Figure 7.

4.6 Loading RDF with Shapes from the Web

There are large volumes of interlinked geospatial data on the semantic web: for example,
in GeoNames, DBpedia, and LinkedGeoData. Loading all these data sets at the same
time is hard for many systems. Handheld devices, with their limited memory capacities,
can have an especially hard time. Often it is unnecessary to have an entire data set in
memory at the same time. In many cases it is possible to fetch parts of these data sets
either by dereferencing the URI of the concept you are interested in (one of the central
ideas of the semantic web), which should return RDF about the concept, or by accessing
a web service that provides RDF (Hartig et al. 2009). For most data sets in the Linked
Data cloud (http://linkeddata.org/) such web access exists. The Space package provides
functionality to automatically load RDF from a URL and index all spatial information
from the fetched RDF. All this information is stored with its source URL and can be
removed from memory again. This is illustrated in Figure 9 and an application example
is shown in Section 7.2.

5 Architecture

The Space package consists of C++ and Prolog code. The division into components is
shown in Figure 10. The main component is the Prolog module space. All parsing and
generation of input and output formats is accomplished in Prolog. All index manipula-
tion is accomplished through the foreign language interface (FLI) from Prolog to C++.

Figure 6 Using a custom closure to bulkload and insert URI-Shape pairs instead of
uri_shape/2: in this case kml_file_uri_shape/3 from the KML module

138 W R van Hage, J Wielemaker and G Schreiber

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(2)

The space_bulkload/2 predicate also communicates back across the FLI from C++ to
Prolog, allowing the indexing functions to ask for candidates to index from the Prolog
database, for example, by calling the uri_shape/2 predicate.

5.1 Incremental Search and Non-determinism

The three search operations provided by the Space package all yield their results incre-
mentally, i.e. one at a time. Prolog predicates actually do not have return values, but
instantiate parameters. Multiple return values are returned by subsequently instantiating
the same variable, so the first call to a predicate can make different variable instantiations
than the second call. This standard support of non-deterministic behavior makes it easy
to write incremental algorithms in Prolog.

Figure 7 Example code showing tight integration of a spatial query and RDFS reasoning.
Query optimization would involve reordering the predicates. Integration of multiple
spatial queries can be accomplished in the same way. Since the queries return URIs, an
intermediate URI-Shape predicate is necessary to get a shape that can be used as a query.
An example is shown in Figure 8

Figure 8 Example code showing nested spatial queries

The Space Package: Tight Integration between Space and Semantics 139

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(2)

Internally, the search operations are handled by C++ functions that work on an
R*-tree index from the Spatial Index Library (Hadjieleftheriou et al. 2005). The C++
functions are accessed with the SWI-Prolog foreign language interface. To implement
non-deterministic behavior the query functions have to store their state between succes-
sive calls and Prolog has to be aware which state is relevant to every call.

The Spatial Index library does not include an incremental nearest neighbor, so we
implemented an adaptation of the algorithm as described in Hjaltason and Samet (1999).
The original algorithm emits results, for example, with a callback function, without

Figure 9 Load RDF describing GeoNames feature #2756888 from the web and automati-
cally add all URI-Shape pairs that can be inferred from the RDF into an index

Figure 10 The architecture of the Space package

140 W R van Hage, J Wielemaker and G Schreiber

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(2)

breaking from the search loop that finds all matches. Our adaptation breaks the search
loop at every matching object and stores a handle to the state (including the priority
queue) so that it can restart the search loop where it left off. This makes it possible to tie
the query strategy into the non-deterministic foreign language interface of SWI-Prolog
with very little time overhead.

6 Performance

Currently, so few systems exist that can deal with space and semantics that there are no
existing benchmarks for queries that require both. In order to give an impression of the
performance of the Space package we have computed the CPU time and memory costs of
some typical bulkloading, assert/retract, and 10.000 nearest neighbor query statements
(nearest neighbor being the slowest query type) on an arbitrary selection of the LinkedGeo-
Data set of OpenStreetMap data (see http://linkedgeodata.org/ and http://www.
openstreetmap.org/ for additional details). We used a Intel Core 2 Duo 2.66 GHz with
4 GB of main memory and 6 MB of L2 Cache, and a bus speed of 1.07 GHz. A million
points load from RDF in memory in about four minutes. A nearest neighbor query takes
around 0.8s to retrieve 10,000 matches, regardless of the size of the index. Bulkloading
takes linear time to load points into memory, while single assertions take exponential time.
For small data sets (i.e. for hundreds of points) bulkloading is only slightly faster than
single assertions, but at 100,000 points the difference is already greater than a factor of 10.
An overview is shown in Figure 11. Given the decreasing price of memory we decided to
use a memory store by default, although the Space package can be set to use a file store with
a memory buffer. Memory use in version 0.1.2 lies around 250B per point.

7 Example Applications

In this section we will outline a few application examples to illustrate how the space
package can be used in practice. The examples show respectively: the combination of
movement pattern rules and spatial indexing; traversing the geospatial web; and setting
up a KML server.

7.1 Example 1: Ship Behavior

To show the applicability of the Space package for the recognition of meaningful
movement patterns we refer to van Hage et al. (2009) who describe using the Space
package to reason over ship behavior. For this we use ship location information from AIS
messages (see http://en.wikipedia.org/wiki/Automatic_Identification_System for addi-
tional details) and we extended GeoNames (http://www.geonames.org) with locations of
harbors. On top of these two sources we define declarative rules to qualify ship behavior.
One example of such a rule is the definition of trip. By means of a compression algorithm
the streams of AIS messages are segmented into intervals where a ship is speeding up,
slowing down or stopped. A trip can then be defined as stopped near a harbor (GeoNames
featureCode H.HBR), then ¬stopped for a while, and then stopped near a different harbor.
On top of such trips, defining the behavior of a ferry can be accomplished by declaring that
there are consecutive trips that lead back to the same harbor. The connection between the
Space package, RDF reasoning, and behavior rules is illustrated in Figure 12.

The Space Package: Tight Integration between Space and Semantics 141

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(2)

7.2 Example 2: Dynamic Loading of Linked Data

Figure 13 shows how the Space package can be used to find parking lots near to the
“Amsterdam Zuid” train station. Information about the station is looked up from the
GeoNames search engine. This is done by constructing a URL that encodes the query for
the station’s name. Dereferencing this URL by calling space_load_url/1 yields a
piece of RDF that contains WGS84 properties that specify its location. All location
information from the RDF is automatically indexed by the space_load_url/1 predi-
cate. The resulting URI-Shape pair can then be used to construct a query to the
LinkedGeoData search engine, which returns nearby features from OpenStreetMap
(http://www.openstreetmap.org/). The RDF returned by this query contains parking lots
that can be found with a Prolog RDFS query. We order the results using the
space_nearest/2 predicate. This example uses constructed URLs, but many URIs can
be dereferenced to retrieve RDF as in the case of the URIs of GeoNames Features.

7.3 Example 3: A Simple KML Server

The Space package can be used to quickly set up a KML visualization of indexed
URI-Shape pairs. In Figure 14 we show a simple example of this without any sophisti-
cated selection procedure or rendering styles for the sake of simplicity. This example
shows how you can import spatial and semantic information from a remote source and
host visualize it for yet another remote source.

Figure 11 Tentative performance figures on LinkedGeoData points: (upper left) CPU
time taken to bulkload n points; (upper right) Memory taken to load n points; (lower left)
CPU time taken to bulkload versus to make single assertions; (lower right) CPU time
taken to computer 10.000 nearest neighbors on varying data set sizes, about constant
around 0.8s. All figures concern version 0.1.2 of the Space package

142 W R van Hage, J Wielemaker and G Schreiber

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(2)

We set up a web server with the http_server/2 and attached it to a Prolog
predicate that handles all requests to this server with http_handler/3. The handler
fetches a parameter from the HTTP GET request, which in this example denotes a URL
from which we fetch RDF with geospatial information. This RDF is processed by the
Space package like in the example in Section 7.2. Then we write a KML document as a
reply to the HTTP request. This document is constructed using the kml_save_*
predicates (see Section 4.4). For each URI-Shape pair indexed by the space package we
construct a KML Placemark tag containing the KML translation of the shape. In addition
to the tag describing the shape, we add a name tag that contains the URI of the shape.
After writing the document as a response to the request we unload the data downloaded
from the URL.

8 Conclusions and Future Work

We presented the Space package, an open source library that adds spatial indexing
capabilities to SWI-Prolog and allows declarative programming over spatial concepts.

Figure 12 Selected SWI-Prolog rules that illustrate the linking of domain-level data to
place and behavior semantics using the Space package. The rules in this example come
from code used to classify ferry behavior described in van Hage et al. (2009)

The Space Package: Tight Integration between Space and Semantics 143

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(2)

Figure 13 Dynamically load RDF over the web and automatically index additional
retrieved locations. This example loads RDF about the train station Amsterdam Zuid from
the GeoNames search engine. We take the location of the station from the RDF and use
it to find RDF about nearby features from the LinkedGeoData OpenStreetMap data set.
In this data we search for nearby car parks ordered by distance from the station

Figure 14 Set up a simple KML server that fetches RDF from a URL that is passed as a
HTTP parameter and render KML of all the URI-Shape pairs described by the RDF

144 W R van Hage, J Wielemaker and G Schreiber

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(2)

The two main strengths of the Space package are its tight integration with the remainder
of SWI-Prolog, which allows relatively easy query optimization for multimodal queries;
and its declarative interface, which allows the formulation of short, understandable code,
while not limiting expressivity. The Space package supports common geospatial and web
standards, such as GML, KML and WKT, and in combination with RDF: GeoRSS Simple
and GML, and the W3C Basic Geo (WGS84) Vocabulary.

At this moment, in version 0.1.2, the Space package only supports points, box
regions and polygons with optional holes, but not linestrings and various kinds of
multi-shapes. In the near future we will completely support the GML Simple Feature
Specification. We would like to extend the Space package with support for common GIS
file formats with some methods to connect URIs to the shapes that come from such files.
A possible implementation for this could be in the form of a database connector for
PostGIS. This would also allow the Space package to consult PostGIS for complex
geospatial queries and geometric operations. For a better performance analysis, and
comparison to the systems mentioned in Section 3, we will set up a set of representative
spatial-semantic queries. Further future work is to make a query optimizer that combines
heuristics from the SWI-Prolog Semantic Web Library and Space package along the lines
of Wielemaker (2005). This will allow us to take advantage of the tight integration
between space and semantic offered by the Space package. Also, we think it could be
useful to implement an extension to the SPARQL RDF query language with functions
that provide geospatial query functionality, cf. Geospatialweb. This can be accomplished
using the Henry SPARQL implementation (http://code.google.com/p/km-pdf/) for SWI-
Prolog by Raimond and Sandler (2008).

Acknowledgements

Thanks go to Marios Hadjieleftheriou, Howard Butler, and Véronique Malaisé. This
work has been carried out as a part of the Poseidon project in cooperation with Thales
Nederland, under the responsibilities of the Embedded Systems Institute (ESI). This
project is partially supported by the Dutch Ministry of Economic Affairs under the
BSIK03021 program.

Endnotes

1 The current version of the Space package, 0.1.2, only supports simple shape types: points,
linestrings, polygons (with holes), and box regions. Development on the other shape types is
underway.

2 Every predicate in the Space package that must be given an index handle also has an abbreviated
version without the index handle argument which automatically uses the default index.

References

Allemang D and Hendler J 2008 Semantic Web for the Working Ontologist. San Francisco, CA,
Morgan Kaufmann

Bennett B, Isli A, and Cohn A G 1998 A system handling rcc-8 queries on 2d regions representable
in the closure algebra of half-planes. In Mira J, del Pobil A, and Ali M (eds) Methodology and
Tools in Knowledge-Based Systems. Berlin, Springer Lecture Notes in Computer Science Vol.
1415: 281–90

The Space Package: Tight Integration between Space and Semantics 145

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(2)

Bernard L, Einspanier U, Haubrock S, Hübner S, Kuhn W, Lessing R, Lutz M, and Visser U 2003
Ontologies for intelligent search and semantic translation in spatial data infrastructures.
Photogrammetrie – Fernerkundung – Geoinformation 2003(6): 451–62

Fonseca F T and Egenhofer M J 1999 Ontology-driven geographic information systems. In Pro-
ceedings of the Seventh ACM International Symposium on Advances in Geographic Informa-
tion Systems, Kansas City, Missouri: 14–9

Hadjieleftheriou M, Hoel E, and Tsotras V J 2005 SaIL: A spatial index library for efficient
application integration. Geoinformatica 9: 367–89

Hartig O, Bizer C, and Freytag J 2009 Executing SPARQL queries over the Web of Linked Data.
Proceedings of the Eighth International Semantic Web Conference, Washington, D.C.

Hjaltason G R and Samet H 1999 Distance browsing in spatial databases. ACM Transactions on
Database Systems 24: 265–318

Kolas D, Hebeler J, and Dean M 2005 Geospatial semantic web: Architecture of ontologies. In
Rodriguez M A, Cruz I F, Egenhofer M, and Levashkin S (eds) GeoSpatial Semantics. Berlin,
Springer Lecture Notes in Computer Science Vol. 3799: 183–94

Liang S, Fodor P, Wan H, and Kifer M 2008 Openrulebench: An analysis of the performance of rule
engines. In Proceedings of the Seventeenth International World Wide Web Conference (WWW
2008), Beijing, China

Lüscher P, Weibel R, and Burghardt D 2009 Integrating ontological modelling and bayesian
inference for urban pattern classification in topographic vector data. Computers, Environment
and Urban Systems 33: 363–74

McBride B 2002 Jena: A semantic web toolkit. IEEE Internet Computing 6(6): 55–9
Orellana D and Renso C 2010 Developing an interactions ontology for characterizing pedestrian

movement behavior. In Wachowicz M (ed) Movement-Aware Applications for Sustainable
Mobility: Technologies and Approaches. Hershey, PA, IGI Global Publishing: in press

Orellana D, Wachowicz M, Andrienko N, and Andrienko G 2009 Uncovering interaction patterns
in mobile outdoor gaming. In Proceedings of the International Conference on Advanced
Geographic Information Systems and Web Services (GEOWS 2009), Cancun, Mexico

Raimond Y and Sandler M 2008 A web of musical information. In Proceedings of the Ninth
International Conference on Music Information Retrieval (ISMIR 2008), Philadelphia, Penn-
sylvania

van Hage W. R, Malaisé V, de Vries G, Schreiber G, and van Someren M 2009 Combining ship
trajectories and semantics with the simple event model (sem). In Proceedings of the First ACM
International Workshop on Events in Multimedia (EiMM09), Beijing, China

Wielemaker J 2005 An optimized semantic web query language implementation in prolog. In
Proceedings of the Twenty-first International Conference on Logic Programming (ICLP
2005), Barcelona, Spain

Wielemaker J, Huang Z, and van der Meij L 2008 SWI-Prolog and the web. In Bossi A (ed) Theory
and Practice of Logic Programming. Cambridge, Cambridge University Press: 363–92

146 W R van Hage, J Wielemaker and G Schreiber

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(2)

