
“scriptie” — 2004/4/22 — 9:59 — page i — #1i
i

i
i

i
i

i
i

Things are said to be named 'equivocally' when, though they have a common name, the definition corresponding with the name differs for each. Thus, a real man and a figure in a picture can both lay claim to the name 'animal'; yet these are equivocally so nam
ed, for, though they have a com

mon name, the definition corresponding with the name differs for each. For should any one define in what sense each is an animal, his definition in the one case w
ill be appropriate to that case only. O

n the other hand, things are said to be named 'univocally' which have both the name and the definitio
n answ

er
in

g
to

 th
e

na
m

e
in

 c
om

m
on

. A
 m

an

 and an ox are both 'animal', and these are

uni
vo

ca
lly

 s
o

n
am

ed, inasmuch as not o

nly
 th

e
na

m
e,

 b

ut a
lso the definition, is the sam

e in both cases: for if a m
an should state in w

hat sense each is
 a

n
an

im
al

, t
he

 s
ta

te
ment in the on

e ca
se would be i

de
n

ti
ca

l w

ith
 that in th

e other. Things are sa
id

 to
 b

e
n

a
m

ed
 'derivatively', which deriv

e t
he

ir
 n

am
e from som

e other name, but d
if

fe
r f

rom it in term

ination. Thus
 th

e
gr

am

marian derives his nam
e from

 the w
ord 'gram

m
ar', and the coura

ge
ou

s
m

an
 fr

om the word 'courage'. Form

s o
f s

pe
ech are either simple or c

om
po

sit
e. Examples of the latter are such expression

s a
s

'th
e m

an runs', 'the m

an wins'; o
f t

he former
'man', 'ox', 'ru

ns', ' wins'
. Of thing

s themselves som
e are predicab

le
 of

 a subject, a
nd

 a

re never present in a subject. Thus 'm
an

' i
s p

red
icable of the individual m

an
, a

nd is nev e
r

prese
n

t i

n a sub j
e

ct
. By bein

g
' p

re

sent in a su
b

j e c t '

 I

do no t
m

ea
n

p
rese n t a

s
 p a rts

 a
re

 pre
s e n t in a w

h

ol

e , b
u

t b
e ing in capable o

f e
x

is
te

nc

e ap a rt

f

rom
 t

h e

 sa
i d subject .

S
om

e things,

 w
hat has been said that both the name and the defin

itio
n of th

e p
red

icate must be predicable of the subject. For in
stance,

'man' is
predicted of the individ

ual
 m

an
. N

ow
 in

 th
is

ca
se

 th
e n

ame of the species m

an' is applied to the individual, for w
e use the term 'man' in describing t

he
 in

di
vi

du
al

; a
nd the definition of 'm

an' w
ill also be predicated of the individual m

an, for the individua
l m

an
 is

 b
ot

h
man and animal. Thus, both the nam

e and the definitio
n

of
 th

e
sp

ec
ies

 are p
redicable of the individual.

W
ith regard, on

 th
e o

ther hand, to those things w
hich are present in

 a
 su

bject, it is generally the case that
ne

it
he

r t
he

ir n
ame nor their definition is predicable

of
 th

at
 in

 which they are p
r e s e nt. T

h o
u

gh, how
ever, the definition is

n
e

ver pred
ica

ble, there is n o
th

in

g in certa
in cases to p

re
ve

n
t

th

e n
ame being u

sed . F o r i
n

st
ance, 'white' bein

g p
re sent in a bo

dy
 is p

redicated of that in which
 it

 is
 p

res
ent, for a body is called w

hite: the definiti
on

, however, of the colou

r w
hite' i

s n

ever predicable
 of

 the body.
Everything

 except prim
ary substa

nc
es

 is either pred

icable of a primar
y

substance or present i
n

a

primary substanc
e.

 T
hi

s becomes evident by reference to pa
rt

ic
ul

ar
 instances which occur. 'Animal' i

s p

redicated
of the spe

cies 'm
an', theref

ore of the i
n

d

i vi
du

al man, for if there were n

o
in

di
vid

ual m
an of whom it

 co
ul

d b
e pred ic

a
te

d, it
 could not b

e p redica ted of t
he

 species 'man
' at all. A

g ain, colour
is

 p
re

sent in b
o

dy, therefore in ...

 expressions w
hich are in no way composite signify substa

nce,
quantity, quality, relation, place, time, position, state, action, or affection. To sketch m

y m
eaning roughly, exam

ples of substance are 'm
an' or 'the horse', of quantity, such terms as 'two cubits lo

ng' o
r '

th
re

e c
ub

it
s

lo
n

g'
, o

f q
ua

lit

y,
such attributes as 'white', 'grammatical'. 'Double', 'half', 'greater', fall u

n
der the category of relation; 'in a the market place'

, '
in

 t
h

e
L

yc
eu

m', under that of place; 'yesterday', 'last year', under that o
f

ti
m

e.
 'L

ying', 'sitting', are term

s indicatin
g position, 'shod', 'a

rm
ed

',
st

at
e;

 't
o

lance', 'to cauterize', actio
n

; 'to b e
la

nc

ed', 'to be cauterized', affection.
N

o o ne of t
h

es
e

te
rm

s, in and by itself , i n vol v

es a

n aff i
r

m

ation; it is by the com
bination of su

ch term
s tha t positiv

e
or

 n
eg

ative sta
t e m e n

ts
 a

ris
e. For ev

e r y

as
se

rt
io

n
m

ust, as is adm
itted, be eithe

r t
ru

e or false, whe
re

as
 ex

pressions which are not in any w
ay

 c
om

po
si

te
 s

uc
h

as
 'man', 'white', 'runs', 'wins', c

an
no

t be either true o
r f

alse. Substance, in the tr
ue

st
 an

d primary a
nd mo st definite sense of th

e w
or

d,
 is that w

hich is neither p
red

ic
ab

le of a subject nor prese
nt in

 a
su

bj
ec

t;
for

 instance, the individual
 m

an

 or horse. But in
 a

 se
condary sense those things

 a
re

called sub

stances w
ithin which, as species, the prim ar y

 substan
ces are include d; a

ls
o

th
ose which, as gen

era, i n c l
u

de t

h e s p e
c

ies
. For in

stance, the in d i

vid
ua l m

a
n

 is
 inclu

d
ed

 in the sp e ci

e

s
 '

m a n
',

 a

nd th
e

ge
nu

s t
o which the ...

 or again, a certain w
hiteness m

ay be present in the body (for colour requires a material basis), yet it is never predicable of anything. Other things, again, are both predicable of a subject and present in a subject. T
hus w

hile know
ledge is present in the hum

an m
ind, it is predicable of grammar. There is, lastly, a class of things which are n

eith
er present in

 a
su

bj
ec

t n
or

 p
re

di
ca

bl
e

of
 a

 su
bj

ec
t,

su

ch
 as th

e individual man or the individual horse. But, to speak more generally, that w
hich

 is
 in

di
vi

du
al

 a
nd has the character of a unit is never predicable of a subjec

t. Y
et

 in
 so

m
e

ca

ses
 there is nothing to prevent such being present in a subject. Thus a certain poin

t o
f g

ra
m

m

atica
l knowledge is present in a subjec

t.
W

he
n

on
e

th
ing is predicated of another, all that which is

 p
re

di
ca

bl

e of the predicate will b e p
red

ic
ab

le
 a

lso
 of

 th
e subject. Thus, ' m

an' is predicated of the in
d

ividual m
an

; but 'animal' is
 p

re
d

ic
at

ed
 o

f '
m

a

n'; it w
i l l , t h er

ef
or

e,
 b

e
pr

ed

icable of the individual man also
: f

or
 th

e i
ndividual

m
an

 is
both ' m

an' and 'a
ni

m
al

'.
If

gen
era are different and co-ordinate, their d

iff
er

en
tia

e are themse
lv

es
 d

iff

erent in kind. Take as a

n
in

st
an

ce
 th

e
ge

nu
s '

an
im

al' and the genus 'knowledge'. 'Wit h
 f

ee

t ' ,
'tw o-foot e

d', 'w
in

g

e d ' ,
 '

aqu
a

tic', are different i
a

e

o f
 '

a

nim

a l ' ;
 t

he species of kn
ow

ledge are not di
stinguished by the same d

iff
ere

ntiae. O
ne species

of
 k

no

wledge does not di
ffe

r
fro

m another in being 'two-foo
ted'. But

 where one genus i
s su

bordin
a

t e

 to an
oth

er, t h e

Willem Robert van Hage

LIVING ON
THE EDGE

Combining Structured
& Semi-structured Data
for Information Retrieval

“scriptie” — 2004/4/22 — 9:59 — page ii — #2i
i

i
i

i
i

i
i

Willem Robert van Hage

Living on the Edge,
Combining structured & semi-structured data for information retrieval

Master’s thesis in theoretical computer science
University of Amsterdam, Language and Inference Technology Group
Supervisors: Maarten de Rijke, Maarten Marx

20 april 2004

Cover art: ‘Drosophyla’, algorithm by Willem van Hage and Isaac Sijaranamual,
text taken from Aristotle’s ‘Categories’.

“scriptie” — 2004/4/22 — 9:59 — page iii — #3i
i

i
i

i
i

i
i

iii

Preface
I started out my studies at the Univeriteit van Amsterdam with computer engi-
neering. Amongst other things I learnt how to program microprocessors and how
to use digital cirquit boards. One sunny afternoon, at the end of an eight-hour
lab session, having spent two weeks trying to find out why the patch I set up on
a cirquit board was not working properly, I opened the window blinds and sud-
dently it worked. Then I closed them again and it stopped working. I was com-
pletely flabberghasted and while I stubled home in shock I decided to switch from
engineering to theoretical computer science, hoping that I would never have to
deal with the unpredictable nature of the outside world again. Yet here I am, grad-
uating in theoretical computer science, doing exactly that. . .
I am back with a vengeance, armed with statistics!

Acknowledgements
First of all I wish to thank my supervisors, Maarten de Rijke for helping me to
bring some structure into the fuzzy ideas that led to this thesis, and Maarten Marx
for his guidance and for introducing me to the lit group. Many thanks also go out
to Khalil Sima’an for helping me with the theory behind detecting collocations.
I also wish to thank my parents for their support, especially to my father, who
helped me a lot with syntax of this thesis even though the semantics sometimes
eluded him. Thank you Vera, for reminding me to live, and Isaac for helping me
with the fruit fly algorithm that generated the cover art for this thesis. Finally,
thanks go to all my friends at the university and in the band.

“scriptie” — 2004/4/22 — 9:59 — page iv — #4i
i

i
i

i
i

i
i

iv

“scriptie” — 2004/4/22 — 9:59 — page v — #5i
i

i
i

i
i

i
i

Contents

I Introduction 1
1 Motivation . 1
2 History . 2

2.1 Books . 2
2.2 Computers . 2
2.3 The Internet . 3
2.4 Internet Documents . 3
2.5 Electronic Books . 4

3 LoLaLi – Logic Language Links 5
3.1 Handbooks . 5
3.2 Electronic Handbooks 5
3.3 The Electronic Handbook of Logic and Language 5

4 This Thesis . 6

II How &Why RetrievalWorks 7
1 Searching in Text . 7
2 Preprocessing . 9

2.1 Document Representation 9
2.2 Morphological Normalization 10
2.3 Stop Words . 11

3 Indexing . 11
3.1 Inverted Indices . 11
3.2 Databases and B-Trees 12

4 Weighting Schemes . 12
4.1 Cosine Similarity . 13
4.2 Zipf ’s law . 13
4.3 tf.idf . 15

v

“scriptie” — 2004/4/22 — 9:59 — page vi — #6i
i

i
i

i
i

i
i

vi CONTENTS

4.4 Okapi . 15
5 Evaluation . 16

5.1 Measures . 17
5.2 Significance Tests . 18

III Structured Information 21
1 Searching versus Browsing . 21
2 The LoLaLi Concept Hierarchy 22
3 Searching in the Concept Hierarchy 23
4 Concept Retrieval . 24

4.1 Baseline . 24
4.2 Short Queries and Documents 27
4.3 High Precision . 28
4.4 False Matching . 28
4.5 Stop Words . 30
4.6 Domain-Specific Word Variations 32
4.7 Where idf & Normalization Fall Short 32

5 Noun Collocation Detection . 33
5.1 Collocations in the Concept Hierarchy 34
5.2 Hypothesis Testing using the T-test 35
5.3 Collocations in the Contents of the Handbook 36
5.4 Collocations in Related Articles on the Web 37
5.5 Restraining the List of Collocations 38

6 Exploiting Collocations . 39
6.1 Evaluation of Collocation Preference 41
6.2 Evaluation of Exact Match Preference 41
6.3 Conclusions . 42

7 Exploiting Structure . 43
7.1 Grouping Concepts from the Hierarchy 44
7.2 The EVect of Grouping 44
7.3 Evaluation of Grouping 47
7.4 Evaluation of Grouping on a Smaller Set 48
7.5 Evaluation of Grouping with Preferences 49
7.6 Conclusions . 49

8 Discussion . 50

“scriptie” — 2004/4/22 — 9:59 — page vii — #7i
i

i
i

i
i

i
i

CONTENTS vii

IV Semi-structured Information 51
1 Automatic Hyperlinking . 52

1.1 Entry Points . 53
1.2 Overlapping Units . 53
1.3 Baseline . 53
1.4 Doing Better than the Baseline 55

2 Exploiting Annotations . 56
3 Exploiting Word Order with Collocations 57
4 Exploiting Concept Relations . 58

4.1 Expanding with Parents and Children 59
4.2 The Response of Certain Topics to Query Expansion . . . 60
4.3 Correlations with the Reaction to Query Expansion . . . 61

5 Discussion . 62

V Conclusion 63
1 Concept Retrieval . 63

1.1 Concept Retrieval and Word Order 64
1.2 Concept Retrieval and Concept Relations 64
1.3 Concept Retrieval Conclusion 65

2 Automatic Hyperlinking . 65
2.1 Automatic Hyperlinking, Annotations and Word Order . 66
2.2 Automatic Hyperlinking and Concept Relations 66
2.3 Automatic Hyperlinking Conclusion 67

A Topics 69
1 Concept Hierarchy Topics . 69
2 Automatic Hyperlinking Topics 70

“scriptie” — 2004/4/22 — 9:59 — page viii — #8i
i

i
i

i
i

i
i

viii CONTENTS

“scriptie” — 2004/4/22 — 9:59 — page ix — #9i
i

i
i

i
i

i
i

List of Tables

ii.1 Examples of Porter-stemmed words. 10
ii.2 Examples of TreeTagger lemmatized words. 10
ii.3 A ranking of word frequencies in the Handbook of Logic & Language. 14

iii.1 Baseline results for concept retrieval 26
iii.2 Incremental R-Precision for example rankings. ◦ indicates an irrel-

evant document and • indicates a relevant document. 27
iii.3 Average document size versus term frequency 29
iii.4 Stemming and lemmatization results for concept retrieval 30
iii.5 The 10words with the highest avg. t f and cf in the concept hierarchy 31
iii.6 Stoplist results for concept retrieval 32
iii.7 Part of speech tag patterns for collocation filtering 34
iii.8 Collocations extracted from the concept hierarchy data 35
iii.9 Critical t-scores for various significance values 37
iii.10 Collocations extracted from the handbook 37
iii.11 Collocations extracted from the world wide web 38
iii.12 Collocation preference factor results for concept retrieval 41
iii.13 Collocation preference results for concept retrieval 41
iii.14 Exact match preference results for concept retrieval 42
iii.15 Results for concept retrieval with lemmatization, and collocation

and exact match preference. 43
iii.16 Grouping results for concept retrieval 48
iii.17 Grouping results for concept retrieval 48
iii.18 Collocation and exact match preference results for concept re-

trieval runs that use grouping 49
iii.19 Final results for concept retrieval 50

ix

“scriptie” — 2004/4/22 — 9:59 — page x — #10i
i

i
i

i
i

i
i

x LIST OF TABLES

iv.1 Automatic hyperlinking baseline results. 55
iv.2 Runs that exploit title and emphasis annotations. 57
iv.3 Runs that exploit collocations. 58
iv.4 Runs that exploit collocations. 59
iv.5 Query properties versus their reaction to query expansion. 61

v.1 Collocation and exact match preference results for concept retrieval 64
v.2 Final results for concept retrieval 65
v.3 Runs that exploit collocations. 66
v.4 Runs that exploit collocations. 67

“scriptie” — 2004/4/22 — 9:59 — page xi — #11i
i

i
i

i
i

i
i

List of Figures

i.1 The LoLaLi Exemplar Architecture 6

ii.1 Weighting schemes assign a number to each document that indi-
cates its similarity to a query. The documents can be ranked ac-
cording to this number. 13

ii.2 Zipf ’s Law, rank against frequency, for terms in the Handbook of
Logic & Language. 14

ii.3 Quantile plots of runs from chapter iv. Shown are a comparison
between the baseline and a run exploiting emphasis annotations
(left), and between a run that exploits titles and one that also ex-
ploits collocations (right). 20

iii.1 An excerpt from the LoLaLi concept hierarchy 23
iii.2 Information retrieval from the concept hierarchy 25
iii.3 Average number of terms per web search engine query 27
iii.4 The list of stop words I used . 31
iii.5 Removing the influence of English 39
iii.6 Restraining the subject of the collocations 40
iii.7 Is having important relatives better than having talent? 44
iii.8 Concept grouping rules . 45
iii.9 Added context . 46
iii.10 Oedipus and modal logic . 46
iii.11 How a ranking is obtained after grouping 47

iv.1 An excerpt from the Handbook of Logic & Language. 51
iv.2 Nested annotations in LATEX. 52
iv.3 \key commands refer to the smallest enclosing unit. 54

xi

“scriptie” — 2004/4/22 — 9:59 — page xii — #12i
i

i
i

i
i

i
i

xii LIST OF FIGURES

iv.4 Eliminating overlapping units from the ranking. 55
iv.5 Emphasis on a key phrase. 56
iv.6 Big units eliminate many descendants from the ranking. 60

“scriptie” — 2004/4/22 — 9:59 — page 1 — #13i
i

i
i

i
i

i
i

Chapter I

Introduction
How this thesis fits in the big picture

1 Motivation

There are many ways to deal with the huge amounts of data in the world. The
Semantic Web (Antoniou and van Harmelen, 2004) springs from the idea that un-
derneath the apparent chaos there is order that can be modeled with logic, while
information retrieval (Baeza-Yates and Ribeiro-Neto, 1999) started out by accept-
ing that the world is a messy place that does not fit in the strict world of logic and
should be accessed through statistics.

In practice these two views do not have to collide. In projects such as Yahoo!
(Yahoo! Inc., 1995) and the Open Directory Project (Netscape, 1998) information
retrieval and knowledge models in the form of subject hierarchies have been suc-
cessfully combined, allowing users to complement their browsing with searching.
In this thesis I want attempt to go one step further than just providing two sepa-
rate ways to access the same data by allowing knowledgemodels influence retrieval
directly.

I will do this in experiments within the LoLaLi project, which is described in
section 3. Before actually getting into details I first want to provide some historical
perspective of the ideas that come together in this thesis.

1

“scriptie” — 2004/4/22 — 9:59 — page 2 — #14i
i

i
i

i
i

i
i

2 Chapter I Introduction

2 History
Informatie is de enige grondstof die groeit in het gebruik

— Johan van Benthem

Almost everybody in our society uses information on a daily basis. It pours into
our houses through every connection with the outside world. Every thought that
leaves our heads starts a life of its own and starts multiplying itself with the speed
of its medium.

2.1 Books
Serious information growth started when people switched from the instantly van-
ishing spoken word, that died when there was nobody around to hear and under-
stand it, to the longer lasting written word. As far as we know now the earliest
of at least two diVerent inventions of writing, called cuneiform, happened in an-
cient Sumeria around 3200bc. Writings were scarce and people had to share. By
1700bc the first libraries of clay tablets were established in Babylonia and in 384bc
Aristotle was born, who became the first known systematic collector of books and
moreover the first to classify writings by their subject.

In 1450ad Johannes Gutenberg invented the printing press in Mainz and in
1455 he was the first to print the Bible. The printing press caused the second big
growth of the speed with which information multiplies itself by reducing the time
it takes to make a book as substantial as the Bible from a lifetime to two years
and by making it possible to make multiple copies of printings without additional
decorations at the same time.

2.2 Computers
The next big step started with the concept of a computing machine. In 1642 Blaise
Pascal created a calculatingmachine that could do addition and subtraction, driven
by a hand operated crank. twenty-nine years later Baron von Leibnitz came up
with the idea that this machine could also do multiplication and it took about a
century for the mass production of similar machines for desktop use to start.

In 1837 Charles Babbage came up with the first programmable computing ma-
chine, the Analytical Engine. It was supposed to become a massive steam-powered
brass mechanical computer that could be made to do just about anything, but it
proved to be too expensive to actually build. His dream had to stay a dream until
the invention of electro-mechanical computers by Konrad Zuse in 1938.

“scriptie” — 2004/4/22 — 9:59 — page 3 — #15i
i

i
i

i
i

i
i

Section 2 History 3

Computers continued to grow, from punch card accountingmachines to enor-
mous vacuum-tube computers used in the second world war, to the first comput-
ers that used transistors in 1958. Storage evolved from aperture card, optical co-
incidence cards, edge-notched cards to cassette tapes and optical storage. In the
1960s the books that once took a lifetime to copy could be copied while you were
getting coVee.

The storagemachinery of the 1960s was already so powerful that you could eas-
ily lose your data between the enormous amounts of other stored data. Bringing
Aristotle’s order to modern-day heaps of documents required something smart.
In 1961 Gerard Salton started working on a system for the mechanical analysis and
retrieval of text, called smart (Salton and McGill, 1983), which in the following
thirty-four years grew to become the most widely-used research tool for informa-
tion retrieval.

2.3 The Internet

While Babbage was dreaming about hisAnalytical Engine, SamuelMorse was work-
ing on sending messages instantly over a long distance. In 1844 he transmitted the
first electronical message, What hath God wrought?, taken from the Bible, from
Washington to Baltimore over a telegraph wire. The telegraph took the world by
storm. Eventually you could send telegraphs to the America’s and even to the Hi-
malayas.

In 1876 Elisha Gray and Alexander Graham Bell invented the telephone. Bell
filed his patent only two hours before Gray tried. Bell and Gray realized that
Morse’s telegraph lines could be used to transmit sound. Their telephones were
the first practical use of Michael Faraday’s discovery that vibrations of metal could
be converted to electrical pulses and back.

In 1973 tcp/ip, the Internet and Transmission Control Protocols, were developed
by Vinton Cerf, and the internet was born. First it only connected universities and
military installations, but when personal computers became aVordable and small
telephonemodems were invented in the 1980s everybody with a phone connection
could join.

2.4 Internet Documents

In 1990 Alan Emtage created Archie, an indexing search tool for ftp sites, because
the number of internet hosts had grown larger than 100,000 and people started
getting lost. One year later Timothy Berners-Lee developed the World Wide Web,
www (Berners-Lee, 1994), a network of documents that everybody could add to.

“scriptie” — 2004/4/22 — 9:59 — page 4 — #16i
i

i
i

i
i

i
i

4 Chapter I Introduction

Tomake this possible he came up with html, the Hypertext Markup Language (the
World Wide Web Consortium, 1992), a document formatting standard that al-
lowed you to point to other documents in such a way that the person (for the time
being) reading the document could automagically retrieve the target document.

In 1993 Matthew Gray and Martijn Koster created two robot programs, the
World Wide Web Wanderer and the meta-tag spider Aliweb respectively, that could
travel this network of documents and collect data from it for their masters.

In 1994 Yahoo! (Yahoo! Inc., 1995) became the first hierarchical directory of the
World Wide Web. Yahoo!’s trick to manage the enormous quantity of documents
on the web was to appoint a caretaker, a librarian if you want, for every topic in
their hierarchy. This resulted in a high quality collection of documents, but it was
not a very scalable solution.

The first system that tried to index the web was Altavista (Altavista, 1995),
which was created by the Digital Equipment Corporation’s Research Lab (Olsen,
1957) in 1995. They devised a way to store nearly every word on the web in a fast
searchable index. This made it possible to actually find new information on the
rapidly growing web.

2.5 Electronic Books

The popularization of the internet that followedmade fast and correct duplication
of information possible for a great audience. The books that once took year to copy
can now be downloaded in a few seconds from the web.

This recent speed-up in the multiplication of information reveals great op-
portunities for publishers. Publishing costs and time can be greatly reduced, since
there is no need for printing. Furthermore electronic books can be transfered to
readers much faster than material books.

However, there are some big problems that come with electronic books. The
first being that if you sell your book to one person, you are really selling it to every-
body on the internet, because it can be copied in the blink of an eye. And the sec-
ond being that readers do not get the same feeling with electronical publications
as with real books. Apart from subjective emotional aspects such as the smell of
a book there are also objective advantages of real books. For example, books have
a physical size. You can easily see how big a book is, roughly how many books
there are in a library, and if you are already halfway through reading a book. Also,
a physical publication gives you a much better idea of the quality of the contents
before even reading it than an electronic book.

If you have to familiarize yourself with a subject you walk into the library,
search for a bookcase with the right topic written on a sign, and pick out the book

“scriptie” — 2004/4/22 — 9:59 — page 5 — #17i
i

i
i

i
i

i
i

Section 3 LoLaLi – Logic Language Links 5

that looks like an introduction or an overview. This is not possible with electronic
books. They are just abstract files on a computer somewhere without any body-
language.

Scientists have to familiarize themselves with subjects all the time. Electronic
publishing has helped science a great deal, but electronic exploration of a new
subject is still lacking. The LoLaLi project tackles this problem.

3 LoLaLi – Logic Language Links

3.1 Handbooks
In the world-wide scientific community people spread around their ideas by writ-
ing articles. Since the goal of researchers is to come up with new ideas and test
whether or not there is some truth or money in them the output of scientific pa-
pers is enormous. Anybody new to a field of science is faced with a mountain of
papers and no clue where to start reading. To help solve this problem scientists
with a good view of the big picture sometimes write handbooks. These books try
to connect all the research done in a certain field.

3.2 Electronic Handbooks
The aim of the LoLaLi project is to find out what scientific handbooks should
look like in the age of electronic publishing. In order to do this it was decided to
create a test environment based on an already existing handbook, where new ideas
can be made concrete. This electronical version of the handbook will contain the
same content as the original, extended with interactive tools, and will serve as
a prototype for electronic handbooks in other fields of research. As an example
case the Handbook of Logic & Language (van Benthem and ter Meulen, 1997) was
chosen, so that the people involved would have some aYnity with the content.

3.3 The ElectronicHandbook of Logic and Language
The prototype of the electronical version of the handbook, dubbed the LoLaLi
Exemplar, contains the original text of the Handbook of Logic & Language and a
hierarchy of concepts that appear in the text.

The concept hierarchy provides the reader with a conceptual map of the hand-
book. It can give the reader an idea of the contents much faster than diagonally
reading the 1200-page book. The idea is that the reader can browse through the
concept hierarchy in a similar way as browsing through Yahoo!’s subject hierarchy

“scriptie” — 2004/4/22 — 9:59 — page 6 — #18i
i

i
i

i
i

i
i

6 Chapter I Introduction

Handbook of Logic
& LanguageConcept

hierarchy
Concept hierarchy

search engine
Automatic
reference
generator

LoLaLi
user interface

Concept search Browsing

Indexing

Handbook
References

Indexing

Ontology
Creation

Figure i.1: The LoLaLi Exemplar Architecture

and when he is lost or wants to jump around in the hierarchy he can type in some
keywords and continue his search at the locations provided by a search engine.

Each concept in the hierarchy contains links that refer to pieces of text in the
handbook that are about the same subject. So the hierarchy can also be used to
search for a subject in the book, just like an index in the back of a book. The diVer-
ence being that such an index is sorted alphabetically, while the concept hierarchy
is sorted by the meaning of the words.

4 This Thesis
This thesis is about two search tasks. The first task is constructing a search engine
that helps the reader find concepts in the concept hierarchy. This is what happens
inside the block labeled ‘Concept hierarchy search engine’ in figure i.1. Chapter iii
explains this task in detail.

The second is a providing a way to automatically generate references from the
concepts to places in the handbook. In figure i.1 this corresponds to the block
labeled ‘Automatic reference generator’. Chapter iv shows how this can be accom-
plished using information retrieval methods.

Through the experiments necessary to accomplish these tasks I would like to
learn whether (and how much) information retrieval can benefit from knowledge
models such as thesauri and ontologies, and from the information encoded in the
structure of semi-structured data.

Before I start with searching in the concept hierarchy I will first, in chapter ii,
explain the information retrieval tools I will use for computing similarity and eval-
uating results.

“scriptie” — 2004/4/22 — 9:59 — page 7 — #19i
i

i
i

i
i

i
i

Chapter II

How &Why RetrievalWorks
A short introduction to information retrieval

Zoekt en gij zult vinden, vindt gij niet dan is het zoek.
—Pun on Matthew 7:7

This chapter deals with trying to find something you are looking for in a large
piece of text or a collection of pieces of text. Trying to find something can mean
many things, for example: looking up something which you know to be some-
where in the text beforehand, known item search; (Mishne, 2004); looking for a
passage that answers a question you have in mind, question answering (Monz,
2003; Monz and de Rijke, 2001; Jijkoun et al., 2003); trying to find new infor-
mation about something you already know, novelty search (Harman, 2002; Monz
et al., 2002b); and finding passages which are about a certain topic, relevance search
(Salton and McGill, 1983). The kind of search I will discuss is of the last kind, rel-
evance search. Relevance is nothing in itself. Something is relevant to something.
The key thing in relevance search is that which things are relevant to, which is
called an information need.

1 Searching in Text
Say your information need is finding someone’s phone number. With a little ex-
perience you can quickly find names in a phonebook. You do not have to start
reading the book at the beginning, but you can split the book where you guess the

7

“scriptie” — 2004/4/22 — 9:59 — page 8 — #20i
i

i
i

i
i

i
i

8 Chapter II How &Why RetrievalWorks

name will appear and if the name is not on the page where you opened the book
you can search the part of the phonebook that does contain the name in the same
way. This way even a bad guesser (someone who just splits the book in half) can
find the name he is looking for in a phonebook with 1000 pages in about 10 splits
and a bit of reading on the page that contains the name. (Knuth, 1968)

Such search methods are only possible if: a) it is clear when you have found
what you are looking for and b) the text is sorted in some way. The latter is only
possible if you know in advance what the relevant property of the text is and if that
property can be ordered. The part of a phonebook that is relevant to the need to
look up someone’s phone number is the numbers that go with the names. Every
number has a name, the reader knows the name he is looking for, and names can
be sorted, so the phonebook can be sorted by name. If your information need is
diVerent however you can not always sort the content you are interested in. In a
novel or a newspaper for example the relevant part of the text is the meaning of
the text, which can not be sorted just like that.

The solution to this problem is to make the text sortable, while not upsetting
its meaning so much that it becomes impossible to see if the text is relevant to the
user’s information need. The first thing you have to do is to formalize the kinds of
information needs you want to cater to. Instances of such information needs are
called topics. Based on this formalization you can decide what pieces of the text
can possibly satisfy such information needs. Given that you cut the text into these
pieces that could be relevant to a possible topic. For example a newspaper could
be cut into articles. These pieces are called documents. Now deciding whether
you have found what you are looking for has been reduced to checking whether a
document is relevant to a topic. This leaves four open questions:

1. How do you represent documents mathematically? I will discuss this in section
2 about preprocessing.

2. How do you sort the documents in such a way that you can eYciently search
through them? This will be answered in section 3.

3. How do you model the human capability to decide whether a document is rel-
evant to a topic in such a way that it can be done by a computer? I will discuss
some solutions that I use in this thesis in section 4 about weighting schemes.

4. How do you evaluate the quality of such a model? In section 5 about evalua-
tion measures and methodology I will elaborate how this is usually done in
the information retrieval community.

“scriptie” — 2004/4/22 — 9:59 — page 9 — #21i
i

i
i

i
i

i
i

Section 2 Preprocessing 9

2 Preprocessing
For a computer text is just a big stream of symbols. To make it clear which of
those symbols belong together and what means the same thing and what does not,
you must process the text. Deciding what is a viable word and what is not is not an
simple task.Words can include all sorts of characters: ‘bag-of-words’, ‘Sima’an’, ‘S5’,
‘1984’, etc. Sometimes white space can even be disputable as a word delimiter. The
problem becomes clear when you look at the oYcial spellings of ‘phone number’
and ‘phonebook’. To every rule there are exceptions, so to get anything done you
have to decide which rules hurt the least.

2.1 Document Representation
To reason about the contents of documents we need to formalize it. Documents
are usually represented with multi-sets, sets of pairs of words and their frequency.
An example is shown below.

d = {〈the,204〉,〈brown,12〉, . . .}

This representation is called a bag-of-words, because the order of the words is lost
hence it is just like throwing all the words in a bag. If you want to look if two
words occur next to each other, or if you want to measure the distance between
words like Minimal SpanWeighting (Monz, 2003) does, you will need the position
of the words. You can adapt the representation to include positional information
however. For example by using triples instead of pairs where the third element is a
set of positions in the document where the word occurs.

d = {〈the,204,{1,6,19, . . .}〉,〈brown,12,{2,20, . . .}〉, . . .}

To index an entire collection you number all the documents and add the doc-
ument number to all pairs or triples in a document’s representation.

C = {〈1, the,204〉,〈1,brown,12〉, . . . ,〈2, the,67〉}, . . .

In real world text there are many possible writings for the same word, with
and without capitals for example. To identify these variations all words are given
a term number and words that should be identified get the same number. The
mapping from words to numbers is usually called the dictionary.

C = {〈1,1,204〉,〈1,2,12〉, . . .}

Dictionary= {〈The,1〉,〈the,1〉,〈brown,2〉, . . .}

“scriptie” — 2004/4/22 — 9:59 — page 10 — #22i
i

i
i

i
i

i
i

10 Chapter II How &Why RetrievalWorks

Russell’s → russel
papers → paper
are → ar
philosophical → philosoph

Table ii.1: Examples of Porter-stemmed words.

Russell’s → Russell
papers → paper
are → be
philosophical → philosophical

Table ii.2: Examples of TreeTagger lemmatized words.

2.2 Morphological Normalization

The mapping to numbers makes two terms either equal or unequal. Some words
are more equal than others however, such as conjugations of a verb, or the singular
and plural form of a noun. The diVerent forms of the same word are called mor-
phological variations. It has been shown that mapping morphological variations
to the same term improves retrieval significantly (Hollink et al., 2004). There are
various ways to accomplish this: n-grams, stemming, and lemmatizing.

Porter’s Stemmer Stemming is a simple way to reduce a word to a stem form
that does look at its context. Themost popular stemmer is Porter’s stemmer (Porter,
1980), which uses a set of regular expressions on the end of the word and chops
oV the matching part. In table ii.1 you can see a few examples of Porter-stemmed
words. As you can see Porter’s stemmer stems quite radically and the stems are not
the linguistic stems of the words. This is so because it is not possible to determine
the correct stem of a word if you know nothing about its context.

Schmid’s TreeTagger Lemmatizers address this problem. They parse a text
‘deeply’ enough to determine what the function of a word is in a sentence, i.e.
if a word is a noun, adverb, verb, etc. Based on this it is decided what the right
stem of the word is. An example of a lemmatizer is Schmid’s TreeTagger. (Schmid,
1994) The output of the TreeTagger is shown in table ii.2. As you can see, the verb
‘are’ is now recognized as a conjugation of the verb ‘to be’.

N-Grams Another way to match word stems is to look at the text through a
shifting window. So that you only look at part of a word at a time and therefor
enable partial matching of a word, so that ‘philosophical’ and ‘philosopher’ match,

“scriptie” — 2004/4/22 — 9:59 — page 11 — #23i
i

i
i

i
i

i
i

Section 3 Indexing 11

but less so than ‘philosopher’ and ‘philosopher’. Letter sequences of length n are
called n-grams. It is possible to let them cross word boundaries or to let them
stop at word boundaries. The sequence ‘papers are’ contains the following border-
crossing 4-grams:

{pape ,aper ,pers ,ers , rs a,s ar , are }

or the following non-border-crossing 4-grams:

{pape ,aper ,pers ,are }

2.3 StopWords

In section 4.2 I will show that in every natural text there are words that occur very
frequently, for example ‘the’, ‘of ’, ‘is’ and ‘a’. If your topics and documents are large
enough to need these words (try thinking up a sentence of 20 words without using
any of the words listed above) these words can negatively influence retrieval scores.
(Hollink et al., 2004) A solution to this problem is to create a list of words that can
be disregarded. Such a list is called a stop word list or stop list.

3 Indexing

If you want an answer to your topic quickly, checking the similarity between the
query and every document will take too much time. Just like reading the phone-
book from the front to the back takes too much time. Since similarity is defined
in terms of terms that occur both in the query and the document you only have to
check documents that contain at least one query term.

3.1 Inverted Indices

In order to do that quickly, the collection will have to be sorted by term. Meaning
that you can look up a term and get a list of documents that contain it. This sorting
process is called inverting. The resulting index is called an inverted index. Some
inverting methods minimize the necessary time, others minimize the memory or
disk space. Usually time and memory space are scarce, so disk space is sacrificed.
A fast, economical inverting method that minimizes inverting time and memory
space is Fastinv (Witten et al., 1999).

“scriptie” — 2004/4/22 — 9:59 — page 12 — #24i
i

i
i

i
i

i
i

12 Chapter II How &Why RetrievalWorks

3.2 Databases and B-Trees
Another option is to let a database do the work for you. Internally most database
systems are organized with B-Trees.

B-Trees combine a good insertion time and a good lookup time. The access
time of a B-Tree isO(logn). Since B-Trees are balanced trees the worst-case lookup
time is close to the average-case lookup time, because the length of all the paths in
the tree is almost the same. Inserting a record into a B-Tree takes O(1) time after
the right place in the tree has been found, which takes O(logn) time. So inserting
an entire collection takes O(nlogn) time, where n is the number of terms to be
indexed.

In this thesis I will use the FlexIR retrieval system (Monz et al., 2002a) on top
of a MySQL database. (DuBois, 2003)

4 Weighting Schemes
Humans with enough knowledge on the subject of a document can decide with
reasonable certainty (Schamber, 1994) whether it is relevant to a given topic. True
understanding of the meaning of a document cannot be computed. So if you want
to let a computer decide which documents are relevant to a topic you have to use
other, computable properties of the documents that have a strong correlation with
relevance.

In information retrieval this is usually done by creating a function that takes
the mathematical representation of a topic (called a query), and a document, and
assigns a number to the document that indicates how similar they are. Such a
function is called a weighting scheme. Then all the documents are sorted by this
number, producing a ranking with the documents that the function decided to be
the most similar at the top and the least similar at the bottom. This is illustrated
in figure ii.1. Weighting schemes assume that similar documents are relevant doc-
uments. The meaning of a text lies in its words. Words that look the same usually
mean the same thing and words that look diVerent usually mean something diVer-
ent. So it is not a strange assumption that two texts which contain the same words
are about the same subject.

So this moved the problem from deciding whether or not a document is rele-
vant to a topic to assigning high numbers to documents that are similar to a topic.
Many diVerent modeling strategies have come up in the past decades, the most
prominent are boolean, vector and probabilistic models. (Salton andMcGill, 1983)
I will only go into detail about two vector models, cosine similarity and tf.idf, and
one probabilistic model, Okapi.

“scriptie” — 2004/4/22 — 9:59 — page 13 — #25i
i

i
i

i
i

i
i

Section 4 Weighting Schemes 13

d2

d5

d6

d3

d1

d4

d7

d2

d1

d4

d3

d5

d7

d6

weighting scheme

more
relevant

q

Figure ii.1: Weighting schemes assign a number to each document that indicates
its similarity to a query. The documents can be ranked according to this number.

4.1 Cosine Similarity
As mentioned in 2.1, documents are represented as vectors of term frequencies.
Vectors that point in the same direction have a similar term composition and or-
thogonal vectors have no common terms, so an obvious way to define the similar-
ity between two document is as the angle between their vectors.

The cosine measure is a function of the angle between a document and a query.
Its values range between zero (orthogonal), and one (identical). The definition
is shown in the equation below, where di stands for the frequency of term i in
document d.

Sim(d,q) = ∑n
i=1di qi√

∑n
i=1(di)2 ·∑n

i=1(qi)2

The cosine measure does not take into account that some words are less meaningful
than other words.

4.2 Zipf’s law
All natural human language is susceptible to Zipf ’s law (Zipf, 1949) also called
the power-law, or Pareto distribution when formulated diVerently. This means in
the case of words that there are only a few words that occur frequently, such as
‘the’ and ‘a’, and many words that occur infrequently, such as ‘articulated’ and
‘smoldering’. Zipf states that if you count all words in a corpus and make a list of
the frequencies as shown in table ii.3, that the relation between a word’s frequency,

“scriptie” — 2004/4/22 — 9:59 — page 14 — #26i
i

i
i

i
i

i
i

14 Chapter II How &Why RetrievalWorks

word frequency rank
the 30.559 1
of 21.703 2
conjugations of ‘to be’ 21.640 3
a 17.168 4
and 13.354 5
.

Table ii.3: A ranking of word frequencies in the Handbook of Logic & Language.

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

Figure ii.2: Zipf ’s Law, rank against frequency, for terms in the Handbook of Logic
& Language.

f , and its rank r is:

f =
k
r

for some constant k, which depends on the corpus. That means that if you plot the
frequency against the rank, both scaled logarithmically, that you get a straight line
similar to the one shown in figure ii.2.

Such a heavy-tailed distribution occurs whenever there is a clash between in-
troducing new objects and using already existing objects and when there is a slight
preference for using existing objects (Barabasi et al., 1999). When people want to
communicate they have to use the same words more often than not, or they will
not be able to understand each-other, but if they only use the same words all the
time they will not be able to express themselves suYciently. Since people tend to

“scriptie” — 2004/4/22 — 9:59 — page 15 — #27i
i

i
i

i
i

i
i

Section 4 Weighting Schemes 15

use the same words as often as possible to make their message easier to understand
by the receiver, their choice for a rare word implies that the word is important for
the meaning of the message. Seen in the light of information theory, these rare
words contain the most information about the text (Shannon, 1948; Li and Ví-
tanyi, 1997).

Most weighting schemes exploit the fact that rare terms are likely to be im-
portant by letting them influence the similarity between a query and a document
more than other terms.

4.3 tf.idf
The tf.idf weighting scheme is such a weighting scheme. (Salton andMcGill, 1983)
The idf part of tf.idf stands for ‘inverted document frequency’, which is defined in
the equation below, where N is the total number of documents in the collection
and ni is the number of documents that contain term i:

idfi = log
N
ni

There are a few diVerent definitions of the tf.idf similarity measure. The simplest
version is listed below, where q is the query and d j the document and t fi, j stands
for how often term ti occurs in document.

t f · idfq,d = ∑
ti∈q∩d j

t fi, j · idfi .

In this thesis I use a version that normalizes the term frequencies in a document.
This has the eVect that the idf factor has relatively more influence. This version is
shown below, where maxk t fk, j stands for the frequency of the most frequent term
in document j .

t f · idfq,d = ∑
ti∈q∩d j

(
1
2

+
1
2

t fi, j
maxk t fk, j

) · idfi .

4.4 Okapi
Another weighting scheme that uses a form of inverted document frequency is
Okapi (Kwok et al., 2000; Robertson et al., 1996). Okapi is a probabilistic model,
meaning that it estimates the probability that a document is relevant to the query,
whereas vector models such as tf.idf just produce an ordering by estimated rele-
vance. In addition to diVerentiating between common and rare terms, Okapi also
implements document length normalization.

“scriptie” — 2004/4/22 — 9:59 — page 16 — #28i
i

i
i

i
i

i
i

16 Chapter II How &Why RetrievalWorks

In this thesis I will use the bm25 variant of Okapi, which is described below:

okapi_sim(q,d j) = ∑
i∈q

okapii, j ·npni, j

okapii, j =
(k1 +1) · t fi, j

K + t fi, j

npni, j = nt fq,i · log
N−df j

df j

nt fq,i =
1
2

+
1
2
·

t fq,i

maxt fq

where:

• t fi, j is the term frequency of term j in document i

• K = k1 · ((1−b)+b· |di |
avgdoclen)

• avgdoclenis the average document length

• maxt fq is the maximal term frequency of any term in the query

• N is the number of documents in the collection

• df j is the document frequency of term j in the collection

The okapii, j part of the weighting scheme calculates whether term j occurs
particularly often in document i, based on the estimated frequency of j given the
length of document i. The npni, j part calculates how rare term j is, based on how
many documents contain it, compared to the total number of documents.

5 Evaluation
The quality of a search engine depends on how well it separates documents that
are relevant to the user’s information need from those that are irrelevant to it. So
to determine how good a search engine is it is necessary to know which documents
are relevant and which are not. A big problem is that people do not always agree
on whether a document is relevant or not. (Schamber, 1994) The less specific the
topic, the more disagreement. This makes it diYcult to make strong claims about
the quality of a search engine in itself, for comparative evaluation however, they
are very useful (Voorhees and Harman, 2002).

“scriptie” — 2004/4/22 — 9:59 — page 17 — #29i
i

i
i

i
i

i
i

Section 5 Evaluation 17

To compare the results of two search engines it is necessary to have some mea-
sure that expresses the quality of each ranking in a meaningful number. These
numbers can then be compared. If there is a significant diVerence between these
numbers it is safe to say that one method is better or worse than the other. Van
Rijsbergen goes into great detail about evaluation in his classic ‘Information Re-
trieval’ (van Rijsbergen, 1979).

In the next subsection I will describe some of the evaluationmeasures I will use
in this thesis. In subsection 5.2 I will go into detail about how to decide whether
the diVerence between two evaluation scores can be called significant.

5.1 Measures

Recall Recall measures how many of the relevant documents in the collection
have been retrieved.1 Let Relevantbe the set of all documents that are relevant
to the topic and Retrievedbe the set of all retrieved documents for the query
corresponding to that topic.

Recall=
|Relevant∩Retrieved|

|Relevant|

Precision Precision measures how many of the retrieved documents are rele-
vant to the query.2

Precision=
|Relevant∩Retrieved|

|Retrieved|

p@n – Precision at a DCV If you want to know if the relevant documents
are anywhere near the top of the ranking you can cut-oV the ranking at a certain
point, called a document cut-oV value (dcv), usually named n. For this top-n of
the ranking you can compute Precision, this is called p@n. It is defined as follows:

p@n = #{d ∈ Rq | rank(d)≤ n}/n,

where Rq is the ordered list of retrieved documents for query q.

r@n – Recall at a DCV You can calculate Recall at a dcv too, as follows:

r@n = #{d ∈ Rq | rank(d)≤ n}/#Rq

1The whole truth,
2and nothing but the truth.

“scriptie” — 2004/4/22 — 9:59 — page 18 — #30i
i

i
i

i
i

i
i

18 Chapter II How &Why RetrievalWorks

Average Precision The mean of the Precision scores obtained after each rele-
vant document is retrieved, using zero as the Precision for relevant documents that
are not retrieved.

AP= ∑
d∈RR

p@rank(d)
|RR|

,

where RR= |Retrieved∩Relevant|. The the mean of the average precision score
over all queries is called the Mean Average Precision,map. (not to be confused with
the abbreviation of ‘maximum a priori’)

MAP= ∑
q∈Q

AP(q)
|Q|

,

where Q is the set of queries.
R-Precision A downside of map is that when the ranking is longer than the
number of relevant documents in the collection, map does not sum up to 1, but to
|Relevant|
|Retrieved| . Ameasure that solves this problem is called R-Precision which essentially
is p@nwhere n = |Relevant|:

RP= p@|Relevant|.

IncrementalR-Precision R-Precisionmakes no diVerence between finding three
out of ten relevant documents at the top of the ranking or at the bottom of the
ranking. Furthermore it is a relatively unstable measure (Buckley and Voorhees,
2000), like any p@n, because it is a single measurement and not mean value. A
solution for both these problems is to average the precision values at 1 through
|Relevant|:

IRP=
|Relevant|

∑
n=1

p@n
|Relevant|

.

5.2 Significance Tests
There are two ways in which one search engine can perform better than another.
One is that it performs well more often than the other, and the other is that when
it performs better, it performs much better than in other cases.
Sign Test The former, frequency based, property can be measured using the
sign test, which counts how often the result of search engine A, Ai , is better than
the result of search engine B, Bi , and compares that to the number of samples n.

T =
2·∑ I [Ai −Bi > 0]−n√

n

“scriptie” — 2004/4/22 — 9:59 — page 19 — #31i
i

i
i

i
i

i
i

Section 5 Evaluation 19

where I [Ai −Bi > 0] = 1 if Ai −Bi > 0 and 0 otherwise.
The null hypothesis of the Sign Test is that there is no diVerence between the

two search engines, under the assumption that P(Ai > Bi) = P(Bi > Ai) and that
the number of positive and negative samples follow a normal distribution.

This method works best when there is a large number of samples, i.e. topics,
available. The power of the sign test is that it is non-parametric, i.e. that it does
not look at the size of the diVerences, but only at howmany positive samples there
are compared to the total number of samples. For the evaluation of information
retrieval this means that it gives a good sense of the average case performance,
because extremely good performance on only one topic does not throw it oV.
The downside of using the sign test is that it needs many samples to give mean-
ingful results. This is no problem for large organized evaluation projects such as
trec (TREC, 2003), clef (CLEF, 2003) or inex (INEX, 2004), but when the as-
sessments have to be done by one person, it is not feasible to have more than a few
dozen topics.

In this thesis I will use some techniques that only work well for a subset of
the topics. Given the small number of topics that I will be able to assess on my
own, these techniques are bound to produce results that are not seen as significant
by the sign test. When combined however, a collection of techniques that achieve
insignificant improvements according to the sign test might give good overall per-
formance that can be significant. Therefor I will only use the sign test in the con-
clusion of every experiment I will do in this thesis. For all intermediate results
that only look at individual techniques I will use a statistical test that looks at the
quantitive diVerence between two runs, the paired t-test.
Paired T-Test When it is important how much better one method does than
the other, for example when there are not enough topics to smooth the error dis-
tribution, the paired t-test can be used. The paired t-test looks at the variance of
the diVerences between the results Ai and Bi .

t = (Ā− B̄)

√
n(n−1)

∑n
i=1((Ai − Ā)− (Bi − B̄))2

where n stands for the degrees of freedom, which is equal the the number of sam-
ples that are compared, and Ā stands for the average of Ai for all samples i. The
paired t-test is described in detail and compared to other methods in an article by
Hull (Hull, 2000).

Like the sign test the paired t-test assumes that the errors follow a normal dis-
tribution. The problem with the paired t-test however is that the distribution is
not over the number of positive and negative samples, but over the diVerences in

“scriptie” — 2004/4/22 — 9:59 — page 20 — #32i
i

i
i

i
i

i
i

20 Chapter II How &Why RetrievalWorks

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure ii.3: Quantile plots of runs from chapter iv. Shown are a comparison be-
tween the baseline and a run exploiting emphasis annotations (left), and between
a run that exploits titles and one that also exploits collocations (right).

performance per topic. These diVerence are usually not normally distributed in
information retrieval. Furthermore, the paired t-test assumes that the distribution
is continuous. This is clearly not the case with the retrieval measures mentioned
in section 5.1. Van Rijsbergen states in his standard on information retrieval (van
Rijsbergen, 1979) that this disqualifies the paired t-test for use in information re-
trieval evaluation. Hull however is less pessimistic and states in his article (Hull,
2000) that this strictly speaking van Rijsbergen might be right, but that the paired
t-test is relatively robust to violations of its assumptions as long as the distribution
is not skewed and there are few outliers. These two properties can be tested by
making a quantile plot of the data. If the data tend towards normality, this should
produce a straight line. Two quantile plot comparing runs from chapter iv are
shown in figure ii.3.

Based on these plots I make the subjective judgement that the assumptions
thepaired t-test makes of the data are safe.

In tables that show results I will use markings that show when a diVerence is
significant (95%confidence) or material (99%confidence) (Spärck Jones, 1979).
Significant diVerences and are marked with M and O. Material diVerences with N
and H.

For the paired t-test the t scores that correspond to 95%and 99%confidence
are respectively t ≥ 1.645and t ≥ 2.346.

“scriptie” — 2004/4/22 — 9:59 — page 21 — #33i
i

i
i

i
i

i
i

Chapter III

Structured Information
Searching in the concept hierarchy

Information that is stored in an orderly fashion is called ‘structured information’.
An example of structured information is the data stored in a database, ordered in
tables, sorted by key. Another form of structured data is the ontology, an organi-
zation of things that are. The word ‘ontology’ derives from the Greek ‘ον’, which
means ‘thing that is’ or ‘being’; and ‘λογος’, which means ‘definition’, ‘reason’ or
‘relation’. So ‘ontology’ means exactly what it does. It describes the relation be-
tween concepts. An example of an ontology is Linnæus’ plant taxonomy.

The relations in an ontology are subsumption relations, which means that all
the properties of the parent concept pass on to its child concepts. So if the concept
Chordate has the property that its instances have a spine, and the concept Human
is relation to Chordate by the subsumption relation subclass-of, then the fact that
Carl Linnæus is a Human being also means that he has a spine.

1 Searching versus Browsing
One of the main purposes of ontologies is to function as conceputal map of a do-
main. Browsing through an ontology can give a user a good idea about how the
concepts in the domain are related. Furthermore, ontologies can be used to quickly
determine the meaning of a concept in the domain. Sometimes however brows-
ing through an ontology can be a diYcult and laborious process. The following
examples illustrate cases where browsing can be diYcult.

21

“scriptie” — 2004/4/22 — 9:59 — page 22 — #34i
i

i
i

i
i

i
i

22 Chapter III Structured Information

• The user does not know where to look for a certain concept. For example,
he is looking for ‘modal logic’ and does not know whether he should search
in the branch ‘philosophy’ or ‘mathematics’.

• The user does not know the name of the concept he is looking for. This can
be the case when the user is looking for the logic used to describe knowledge
and belief, and he has no idea that this is called ‘epistemology’.

• The ontology is so large that it simply takes forever to find what the user is
looking for.

In these cases information retrieval can help by providing random access to con-
cepts in an ontology and flexible interpretation of the user’s information need.

In this chapter I will discuss the problems that come with searching in ontolo-
gies and how I tackled them while building a search engine for the LoLaLi concept
hierarchy.

First I will describe the LoLaLi concept hierarchy. Then, in section 3 I will
discuss the specific search task I will address. In section 4 I will first introduce the
topic set I will use and then discuss the problems that come with concept retrieval
and show some results that support the decisions I made. One of the things I will
do to solve the problems discussed in section 4 is to extract collocations from the
handbook and a web collection. In section 5 I will take a detour to describe the
text extraction which was necessary to extract the collocations. Then in section 6
I will come back to the subject of concept retrieval and exploit the collocations to
improve the results of concept retrieval. At the end of that section I will evaluate
and discuss the results. In section 7 I will explore another way to improve the
concept retrieval results, exploiting the relations in the concept hierarchy. In that
same section I will evaluate and discuss the results. Finally, in section 8 I will draw
conclusions from the results in the chapter.

2 The LoLaLi ConceptHierarchy

The LoLaLi concept hierarchy is an ontology created by Maarten de Rijke and
Caterina Caracciolo (Caracciolo et al., 2002) of the concepts in the Handbook of
Logic & Language and the relations they have with each other. Each concept has
a name, consisting of a few words, e.g. ‘modal logic’, and most concepts have a
description of a few sentences. Most concepts have instances that are hyperlinks to
parts of the handbook.

“scriptie” — 2004/4/22 — 9:59 — page 23 — #35i
i

i
i

i
i

i
i

Section 3 Searching in the ConceptHierarchy 23

artificial
intelligence

knowledge
representation

modal logic

logic

temporal
logic

modal
operator

mathematics

computer
science

Figure iii.1: An excerpt from the LoLaLi concept hierarchy

The concept hierarchy is a connected graphwith three kinds of relations. Those
of a subtopic-supertopic kind: is-a and part-of. Associative relations: has-notion,
has-mathematical-result, etc. and thesaurus relations: antonym-of, related-to, etc.

An example of the hierarchy is shown in figure iii.1, where the arrows show
any kind of subtopic-supertopic relation between two concepts. Throughout this
thesis arrows point in the direction of the narrower concept.

As described in the beginning of this chapter, the concept hierarchy can be
used to browse through the concepts of the handbook. For example to determine
the meaning of such a concept or to see whether a certain topic is included in the
book. But the concept hierarchy can also be used as an index to the actual text of
the handbook by following the hyperlinks at the concepts. This way the concept
hierarchy can also be used as a Yahoo!-like index.

3 Searching in the ConceptHierarchy
The goal of the concept hierarchy search engine is to solve the browsing prob-
lems describe in the beginning of this chapter. This is done by letting the user
describe the concept he is looking for with a short list of query terms, like most
web search engines allow you to do. The search engine takes this query and provide
the user with a few entries into the concept hierarchy that fit the user’s request the
best. Say the user is interested in ‘epistemology’, but he does not know that term,
then he types in ‘logic used to describe knowledge and belief ’ and
the search engine should return a short, ordered list of references to concepts in the
concept hierarchy that have to do with epistemology, such as primarily the concept
‘epistemology’ itself, but possibly also ‘modal logic’ or even ‘temporal logic’.

An illustration of the process from the user’s thought to the output of the

“scriptie” — 2004/4/22 — 9:59 — page 24 — #36i
i

i
i

i
i

i
i

24 Chapter III Structured Information

search engine is shown in figure iii.2. It shows the case where the user knows what
he is looking for, but he does not know where to find it.

4 Concept Retrieval

This section deals with what happens inside the box in figure iii.2 with the de-
scription Retrieval of the query terms: Finding the concepts that match the query
the best; and the box Rank the results according to content & location in the hierar-
chy: Computing a list of the retrieved concepts.

To decide if a concept should end up in this list, the search engine computes the
similarity between the user’s question and the concept. I use information retrieval
techniques to compute this similarity. The words from the user’s question will be
my query and the names and glosses of the concepts in the hierarchy will be my
documents.

In this section I will describe the specific problems of concept retrieval:

• Dealing with the lack of data due to short queries and short documents.

• Achieving high-precision retrieval without redundancy.

• Dealing with false matching due to morphological normalization.

• Dealing with stop words in a domain-specific collection.

• How to find good discriminators in domain-specific documents.

In order to test my intuitions about how to deal with these problems I will
need a topic set and a basic search engine to set a baseline. I will now introduce
the baseline I will use in the rest of this section.

4.1 Baseline

As a first baseline I use the FlexIR retrieval engine (Monz et al., 2002a) with the
tf.idf weighting scheme as described in section 4.3. I will see the name and de-
scription of a concept as one document, but I count the terms in the name twice.
This assures that a concept’s name is more important than its description.

To test anything you need a topic set. This set should be large enough, hetero-
geneous, representative of the information needs the search engine caters to, and
unbiased. In practice it should also be small enough to be assessable by hand.

“scriptie” — 2004/4/22 — 9:59 — page 25 — #37i
i

i
i

i
i

i
i

Section 4 Concept Retrieval 25

Formulate need as a
search engine query

User wants to
know something

Thoughts

? knowledge
representation

modal logic

User types in
his query

Retrieval of the
query terms

knowledge representation
logic
modal logic 1
modal logic 2
modal operator
temporal logic 1
temporal logic 2
...

Concept Hierarchy
artificial

intelligence

knowledge
representation

modal logic 2

logic

temporal logic 2

modal logic 1

modal
operator

temporal logic 1

modal logic
used for
knowledge

representation

Rank the results according
to contents & location in

the hierarchy

knowledge representation
modal logic 1
modal logic 2
temporal logic 1
temporal logic 2
modal operator
logic
...

Grouping for
visualization

artificial intelligence
 knowledge representation
 modal logic 1
 temporal logic 1
knowledge representation &
logic
 modal logic 2
 modal operator
 temporal logic 2
...

Present results
to user

Figure iii.2: Information retrieval from the concept hierarchy

“scriptie” — 2004/4/22 — 9:59 — page 26 — #38i
i

i
i

i
i

i
i

26 Chapter III Structured Information

The minimal size of the topic set depends on which significance level you want
to get with which evaluation measure. Some measures are more stable than oth-
ers. The value of stable measure does not change much when you make a small
change to the list of documents it measures. Incremental R-Precision is quite a sta-
ble measure, because it is an average of R values. So if there is a small change in
the ranking, the diVerence in the Incremental R-Precision is also small. This means
you only need a few documents to get a reasonable error margin. 25 is seen as the
minimum number of topics to produce believable results. More about measure
stability can be found in papers by Voorhees and Buckley (Buckley and Voorhees,
2000; Voorhees and Buckley, 2002).

To get more topics I could simply sit down and write a whole bunch, but this
is likely to produce very homogenic topics and it is certaintly biased, because I am
the author of the search engine and I know the contents of the concept hierarchy
very well. In practice it was diYcult to get others to write topics for me that were
of any use, mainly because of the small size of the hierarchy. This restrains the
range of possible topics a lot, and thus makes it more diYcult to think up good
topics. So as a middle-of-the-road solution I took the topics three people (Cate-
rina Caracciolo, Balder ten Cate, and Yoav Signer) wrote for me, copied the good
ones and adapted the bad ones a bit. Caterina Caracciolo and Stephan Stipdonk
did user tests with first-year artificial intelligence students to see how well they
understood the user interface. As part of this user test the students had to type in
some queries. I took these queries from the webserver’s log and wrote some topics
in the style of the students. This brought the total number of queries to 26, written
by four people, of which two (plus the students) did not know the contents of the
hierarchy. Furthermore, they cover various parts of the hierarchy. The topics can
be found in appendix A, section 1.

The result of the baseline is shown in table iii.1

Inc. R-Precision Recall
baseline .57 .50

Table iii.1: Baseline results for concept retrieval

The results of the baseline are reasonably good. I find half of the relevant con-
cepts and an average Incremental R-Precision of .57means that for about fifty per-
cent of the topics the highest ranked concept is relevant, or the majority of the
following concepts are relevant. Examples of rankings with their Incremental R-
Precision are shown in table iii.2

“scriptie” — 2004/4/22 — 9:59 — page 27 — #39i
i

i
i

i
i

i
i

Section 4 Concept Retrieval 27

ranking Incremental R-Precision
•• 1.00
•••◦◦◦ 0.80
•◦ 0.75
••••••◦◦•◦ 0.57
◦•••◦• 0.53
•◦◦◦ 0.52
•◦◦◦◦◦ 0.41
◦•◦• 0.33
◦• 0.25
◦◦ 0.00

Table iii.2: Incremental R-Precision for example rankings. ◦ indicates an irrelevant
document and • indicates a relevant document.

4.2 Short Queries and Documents
The major diVerence between a regular relevance search task and searching in the
concept hierarchy is the lack of data. First of all, the documents are very short. The
glosses are on average only 23.3 words long, The concept names are on average 1.8
words long. So the average document is about 26 words long. Regular weight-
ing schemes are suitable for dealing with documents with thousands of words.
And second, the queries are very short too. Bernard Jansen showed (Jansen, 2000)

2457+ 3 016

93%

Figure iii.3: Average number of terms per web search engine query

that approximately 93% of all web search engine queries contain between 0 and 4
terms, with a mean of about 2.2,1 see figure iii.3. A user study with first-year ar-
tificial intelligence students, performed by Caterina Caracciolo and Stephan Stip-
donk as shown that the user interaction with the concept hierarchy search engine
is very similar to a web search engine when it comes to query length. The average
query lenth was even a bit below 2.

1N.J. Belkin et al. (Belkin, 2003) showed that providing a bigger query entry box than the one-line
text entry field generally used in web search engines and actively telling users that a longer query leads
to better performance can push the mean query length up to about 6 terms.

“scriptie” — 2004/4/22 — 9:59 — page 28 — #40i
i

i
i

i
i

i
i

28 Chapter III Structured Information

The fact that both the queries and the documents are so short rule out any
techniques that work by redundancy, that would work on large collections such as
the documents that Google or Yahoo! index.

4.3 High Precision

The purpose of the concept search engine is to provide the user with a few high
quality concepts, like with a web search engine, where users will usually not bother
to look at pages below the top-10.

Providing the user with the best top-n concepts requires a method that yields
very high precision. A web search engine can achieve this by just being pedan-
tic about the similarity, because it has access to an enormous amount of data.
When you have such heaps of data using no morphological normalization works
fine. In the case of the concept hierarchy it is not that simple. If you just throw
away all the documents that contain ‘operator’, but not ‘operators’ when the query
contains ‘operators’, you might throw away all of the important documents, just
because there are so few documents that contain ‘operator’ or ‘operators’. So the
idea that you have to match more liberally when you have sparse data clashes with
the thought that you cannot match too liberally if you want high precision. I will
try to find a good middle course for the task at hand.

4.4 FalseMatching

Any kind ofmorphological normalization can introduce errors called ‘falsematches’.
For the simple reason that a word once normalized can mean something diVer-
ent from its original form. When you use a 4-grams instead of words to match
morphological variations of words, for example ‘formal’ and ‘formalism’, it may
happen that you match a word that looks similar to the word in the query even
though it does not have the same stem, like: ‘formal’ and ‘normal’.

Say the query contains the word ‘formal’, then one occurrence of the term ‘for-
mal’ generates 5 matches: for , form , orma , rmal , mal , and one occurrence
of ‘normal’ generates 3 matches: orma , rmal , mal . This means that if docu-
ment A = 〈‘formal’〉 and B = 〈‘normal’, ‘normal’〉, then the irrelevant document
B matches 2 × 3 = 6 times, while the relevant document A only matches 5 times.
This phenomenon becomes a great problem when documents are short and the
collection is small.

The terms in short documents are relatively diverse. The longer documents
are, the higher the average word’s term frequency, t f , will be. Think of it this way:
It is easy to come up with a sentence that does not use words more than once. As

“scriptie” — 2004/4/22 — 9:59 — page 29 — #41i
i

i
i

i
i

i
i

Section 4 Concept Retrieval 29

a matter of fact, that very sentence did not contain duplicate words, and neither
does this one. If you try to write ten sentences without using the same word more
than once you will run into trouble once you run out of words like ‘a’, ‘the’ or ‘is’.
In figure iii.3 you can see the average t f increase with the document size.

avg. t f = ∑
d

∑
w∈d

freqd,w

|d|

As you can see, the LoLaLi concept hierarchy has an avg. t f of almost 1. That

collection avg. document size avg. t f
LoLaLi concept hierarchy 25 1.043
cacm abstracts 91 1.465
Wall Street Journal 1989 414 1.782
LA Times, May 1994 536 1.835
New York Times2 759 1.971
ieee T. K. 2001 articles3 4864 5.030

Table iii.3: Average document size versus term frequency

means almost all words occur only once in every document that contains them.
The exceptions being the stop words, as shown in figure iii.5. If an arbitrary word
in a document matches a query term, it will on average match as often as the
average t f . This means that when your documents are long as there are relatively
many matches per document, and since false matches generally occur less often
than true matches the false matches will be overwhelmed by the true matches.
When your documents are short there is no space for statistics to do its work,
and every false match can make a diVerence. When you have a huge collection
there can be so many relevant documents that they can completely fill up the list
of retrieved documents, which means the documents introduced by false matches
will be pushed oV the bottom of the list by the relevant documents. When the
collection is small however, there are usually too few relevant documents to swamp
the documents introduced by false matching.

Since the documents in the concept hierarchy are so short and since there are
so few of them, one false matchmakes a big diVerence. So my conclusion is that ei-
ther I should not domorphological normalization at all, or it should be something
cautious, not n-gramming, but plural stemming or lemmatization.

2New York Times news stories from the Aquaint 2000 corpus
3Articles from the ieee Transactions on Knowledge and Data Engineering journals of 2001

“scriptie” — 2004/4/22 — 9:59 — page 30 — #42i
i

i
i

i
i

i
i

30 Chapter III Structured Information

I will compare the results of nomorphological normalization to those achieved
with the Porter stemmer (Porter, 1980) and the TreeTagger (Schmid, 1994) lem-
matizer. Previous research has shown a few times that even though lemmatiz-
ing would seem to be the correct thing to do stemming preforms better for En-
glish (Hollink et al., 2004). Since English contains so few irregular morphological
variations as opposed to for example German or Icelandic. This could well be the
same in this case.
Null Hypothesis Morphological normalization does not improve concept re-
trieval scores.
AlternativeHypothesis Morphological normalization can improve scores.

The results are shown in table iii.4.

Inc. R-Precision Recall
plain baseline .57 .50
TreeTagger .67M .60M
Porter’s stemmer .69M .62M

Table iii.4: Stemming and lemmatization results for concept retrieval

There is a significant improvement from the plain baseline to both runs that
use morphological normalization, both for Incremental R-Precision and Recall.
This means I can accept the alternative hypothesis. My intuition proved to be true,
although there is no significant diVerence between the stemmed and lemmatized
results.

Based on this result I decide to continue experimenting using these lemma-
tized and stemmed runs as my new baseline.

4.5 StopWords
As mentioned before most of the words in the concept hierarchy with an avg.
t f > 1 are stop words. All words with an avg. t f 6= 1 are shown in the left table
in figure iii.5. This is not the only discriminator for stop words however. Another
good indicator for a word to be a stop word is if the word occurs very frequently
in the entire collection. The 10 words with the highest cf are shown in the right
table in figure iii.5.

Stop words occur frequently in general and are very bad discriminators for
relevant documents, which means they can introduce many irrelevant documents
into the ranking. So it is important to carefully select which words should and
which words should not appear in the stop list. I say ‘carefully’, because the concept

“scriptie” — 2004/4/22 — 9:59 — page 31 — #43i
i

i
i

i
i

i
i

Section 4 Concept Retrieval 31

word avg. t f stop word?
graphs 2 no
or 1.437 yes
noun 1.333 no
a 1.245 yes
computer 1.250 no
and 1.230 yes
of 1.197 yes
the 1.143 yes
that 1.143 yes
language 1.050 no

word cf stop word?
of 85 yes
the 56 yes
logic 51 no
a 49 yes
that 32 yes
theory 31 no
or 23 yes
language 21 no
to 17 yes
and 16 yes

Table iii.5: The 10 words with the highest avg. t f and cf in the concept hierarchy

a, about, above, after, again, against, all, am, an, and, any, are, as, at,
be, because, been, before, being, below, between, both, but, by, did,
do, does, doing, down, during, each, few, for, from, further, had, has,
have, having, he, her, here, hers, herself, him, himself, his, how, i, if, in,
into, is, it, its, itself, me, more, most, my, myself, no, nor, not, of, oV,
on, once, only, or, other, our, ours, ourselves, out, over, own, same,
she, so, some, such, than, that, the, their, theirs, them, themselves,
then, there, these, they, this, those, through, to, too, under, until, up,
very, was, we, were, what, when, where, which, while, who, whom,
why, with, you, your, yours, yourself, yourselves

Figure iii.4: The list of stop words I used

hierarchy is filled with text on a very specific subject, which means that some of
the frequent words are not stop words. The word ‘logic’ for example, which is an
important keyword, occurs in more documents than all stop words except ‘of ’,
‘the’ and ‘a(n)’. So just taking the bunch of words with the highest frequencies and
calling them a stop list is no option.

I compiled a stoplist without nouns or domain-specific verbs such as ‘reason’
or ‘compute’ shown in figure iii.4.

There is one other important thing to take into account: the size of the doc-
uments. A list of stop words can only do its work when the documents are large
enough for the stop words to have any significant influence. Using a list of stop
words is a good thing, but in the case of the concept hierarchy I expect the actual
influence of such a list to be marginal. This means the benefit of a stoplist might

“scriptie” — 2004/4/22 — 9:59 — page 32 — #44i
i

i
i

i
i

i
i

32 Chapter III Structured Information

not outweigh the minute chance that a user will not be able to find a concept
because what he is looking for is best described by a word in the stoplist.

I will now test the impact of the stoplist in figure iii.4.
NullHypothesis Using a stoplist does not improve concept retrieval scores.
AlternativeHypothesis Using a stoplist can improve concept retrieval scores.

The results are shown in table iii.6.

Inc. R-Precision Recall
TreeTagger baseline .53 .38
TreeTagger with stoplist .54 .37
Porter’s stemmer baseline .54 .38
Porter’s stemmer with stoplist .55 .37

Table iii.6: Stoplist results for concept retrieval

There is no significant diVerence between using a stoplist and not using a sto-
plist, so I have to accept the null hypothesis. This is probably the case because the
topics and the documents are almost completely made up of keywords.

Based on this result I decide not to use a stoplist for the rest of the experiments.

4.6 Domain-SpecificWord Variations
Since the concept hierarchy is filled with scientific content, it contains lots of fancy
morphological variations of words, e.g. ‘temporal’, ‘linear’, ‘recursive’, etc. In the
case of the example query ‘logics used to describe time-related phenomena’, it is
necessary tomatch ‘time-related logics’ with ‘temporal logic’ in order to return the
right concepts. These variations are not included in TreeTagger or Porter’s stem-
mer. Correct lemmatization could be accomplished with a scientific lexicon, or
with feedback on a much bigger corpus.

For now I decide to ignore this problem, because the people using the search
engine will be either logicians or students. Both can be expected to know the sci-
entific jargon, because if that would not be the case they would not be able to
understand the text in the hierarchy in the first place.

4.7 Where idf & Normalization Fall Short
Apart from being short and full of lingo the contents of the concept hierarchy are
diVerent from the contents of a novel or an article in another way. The glosses
are so concise and to the point that there are relatively few words that do not deal

“scriptie” — 2004/4/22 — 9:59 — page 33 — #45i
i

i
i

i
i

i
i

Section 5 Noun Collocation Detection 33

with the subject of the gloss, while in prose, where you have to read in between
the lines, the opposite is true. This leads to a relatively high collection frequency,
cf , for keywords and a relatively low cf for usual stop words, that function as
glue. As mentioned before, the word ‘logic’ occurs very frequently in the concept
hierarchy. This makes ‘logic’ a bad discriminator. Meaning that it doesn’t tell two
concepts apart very well, which is contrary to what you would expect from an
odd word like ‘logic’. This becomes a problem when your query does not have any
good discriminators in it, e.g. ‘recursion theory’, both very common words in the
concept hierarchy. When all the query terms occur in the document and when
‘recursive’ and ‘recursion’ are normalized to the same term ‘recursive function
theory’ and ‘recursion theory’ get the same idf score, even though they are only
distantly related.

Possible solutions to the problem of having few good discriminators are the
following.

Collocations It is clear that when ‘temporal’ and ‘logic’ appear consecutively
in the query that they belong together. In section 5 I will try to detect word se-
quences that belong together and exploit this knowledge about word order in sec-
tion 6.

Exact Matches A very simple, but eVective rule of thumb is that when a user
types in ‘modal logic’ he really means ‘modal logic’. Whenever there exists a con-
cept with a name that literally corresponds to the topic, it is extremely likely to
be a concept the user is looking for. When such a concept does not exist you will
have to use other tricks. I will combine exact match preference with collocation
preference and show the results along with the results of collocations.

Mean Span Weighting Minimal Span Weighting (Monz, 2003) adds a bonus
to a document’s score when the query words occur close together. msw is easy
to implement and does not require any outside data, but it does not order the
words, so ‘logical semantics’ gets the same score as ‘semantical logic’, when ‘logic’
∼ ‘logics’ and ‘semantical’ ∼ ‘semantics’. This works best with large documents,
so I will not use it for the concept search engine.

5 Noun Collocation Detection
All concept names in the concept hierarchy withmore than one word: ‘Löwenhein-
Skolem-Tarski theorem’, ‘temporal logic’ etc., happen to be noun collocations. If
a user types in a query that exactly matches a concept name, it is very likely that
he is really looking for that concept. And if he types in something like ‘semantic

“scriptie” — 2004/4/22 — 9:59 — page 34 — #46i
i

i
i

i
i

i
i

34 Chapter III Structured Information

A N logical study
N N computer science
A A N floating decimal point
A N N recursive enumerable set
N A N card programmed calculator
N N N program storage unit
N P N theory of computation

Table iii.7: Part of speech tag patterns for collocation filtering

relation ’, which doesn’t have its own concept in the hierarchy, but which is de-
scribed in concepts such as ‘antonymy’, ‘synonymy’, and ‘hyponymy’, it is likely that
those are the concepts he is looking for. Other concepts might contain more oc-
currences of the words ‘semantic’ or ‘relation’, and would be likely to end up high
in the ranking of a regular tf.idf system. So in this case it is important to stress the
fact that ‘semantic relation’ is a collocation, and not just two words occurring in
the gloss.

5.1 Collocations in the ConceptHierarchy
Manning and Schütze (Manning and Schütze, 1999) describe a basic algorithm by
Justeson and Katz (Justeson and Katz, 1995) for finding collocations in a piece of
text. They first label all the words with a part of speech tag, and then select certain
combinations of tags, shown in figure iii.7. ‘A’ stands for antecedent, ‘N’ for noun,
and ‘P’ for preposition.

The data in the concept hierarchy is so sparse that the only 11 collocations come
up when it is preprocessed this way. Figure iii.8 shows the collocations, how often
they occur in the concept hierarchy, and how often their constituents, the words
that make up the collocation, occur in the concept hierarchy. The last number in
the table is the t-score of the collocation, explained later on in this section and in
Manning and Schütze’s book on page 163–166 (Manning and Schütze, 1999).

So as you can see the collocation ‘semantic relation’ was discovered, but many
other collocations, which only occur once in the concept hierarchy, but which oc-
cur frequently in other literature about logic, such as ‘formal description’, were
thrown away. The collocation ‘branch of computer’ is the start of the collocation
‘branch of computer science’, but since we don’t look for collocations longer than
3words the full collocation was not detected. Justeson and Katz’s algorithm (Juste-
son and Katz, 1995) continues by only keeping collocations of which the con-
stituents occur together relatively often.Which in theory should remove sequences

“scriptie” — 2004/4/22 — 9:59 — page 35 — #47i
i

i
i

i
i

i
i

Section 5 Noun Collocation Detection 35

collocation freq cf of the constituents t-score
theory of computation 2 4, 70, 2 79.672
study of language 4 12, 70, 10 41.058
branch of computer (science) 2 6, 70, 6 37.516
system of logic 2 5, 70, 18 23.677
semantic relation 3 5, 4 20.454
computer science 3 6, 4 18.645
modal logic 2 2, 18 10.040
temporal logic 2 3, 18 8.118
logical study 2 5, 12 7.676
function word 2 4, 21 6.402
content word 2 4, 21 6.402

Table iii.8: Collocations extracted from the concept hierarchy data

such as ‘world wide journey’, but keep ‘world wide web’. They do this with hypoth-
esis testing.

5.2 Hypothesis Testing using the T-test

Null Hypothesis If you assume that the occurrences of the words w1 and w2

are completely independent, then P(w1w2) = P(w1)P(w2). This is our null hy-
pothesis, H0.

As an example I will show how to compute the null hypothesis for the collo-
cation ‘modal logic’ in the handbook. In practice you can approximate P(w) with
the collection frequency, cfw, of w and the total number of terms, ∑t cft , in the
collection.

P(w) =
cfw

∑t cft

‘modal’ occurs 353 times in the handbook, ‘logic’ 2859 times, and the total number
of terms is 511881 (including symbols that mark the beginning and end of files).

H0 = P(‘modal logic’) = P(‘modal’)P(‘logic’) =

353
511881

· 2859
511881

≈ 3.852·10−6

“scriptie” — 2004/4/22 — 9:59 — page 36 — #48i
i

i
i

i
i

i
i

36 Chapter III Structured Information

T-Score To express how likely a certain combination of words is we need a sta-
tistical test. Brigitte Krenn and Stefan Evert (Krenn and Evert, 2001) have shown
that for the related task of detecting PP-verb collocations the t-test works very well,
so I choose the t-test. The t-test looks at the diVerence between the sample mean
x̄, and the mean, µ , of the distribution, divided by its variance σ2

N , where N stands
for the size of the data set.

t =
x̄−µ√

σ2

N

Say you are looking for a collocation w1, . . . ,wn. If the null hypothesis is true, then
you can see the process of randomly generating n-grams from the words in the
corpus as a Bernoulli trial if you interpret the n-grams that match the collocation
as a 1 and all other n-grams as a 0. The chance pof getting a 1will be the probability
of w1, . . . ,wn occurring at random,

p = P(w1, . . . ,wn), q = (1− p)

In the case of the ‘modal logic’ example the mean of the Bernoulli distribution
is 3.852·10−6, because p ≈ x̄, and the variance is σ2 = p(1− p) ≈ p4, and the
sample mean

p≈ x̄ =
cfmodal logic

∑t cft
=

99
511881

≈ 1.934·10−4

So for ‘modal logic’ in the handbook the t-score is computed as follows:

t =
1.934·10−4−3.852·10−6√

1.934·10−4

511881

≈ 69.102

The critical t-score for significance value α = .005 is 2.576, as shown in fig-
ure iii.9. The t-score for ‘modal logic’ is 69.102, which is greater than 2.576, which
means we can reject H0, which states that the constituents are independent, with
a confidence much greater than 99%.

5.3 Collocations in the Contents of theHandbook

The same method applied to the text in the handbook yields many more colloca-
tions. The results are shown in figure iii.10. Some of them start with ‘formal ’.
One of the collocations we could not extract from the concept hierarchy, because

“scriptie” — 2004/4/22 — 9:59 — page 37 — #49i
i

i
i

i
i

i
i

Section 5 Noun Collocation Detection 37

α t-score confidence
.05 1.645 95%
.025 1.960 97.5%
.01 2.326 99%
.005 2.576 99.5%
.0025 2.807 99.75%
.001 3.091 99.9%

Table iii.9: Critical t-scores for various significance values

collocation freq cf of the constituents t-score
formal learning theory 6 508, 18, 2334 664.807
formal language theory 11 508, 2060, 2334 113.835
formal semantic analysis 2 508, 779, 588 67.084
formal learning 6 508, 18 44.758
formal description 2 508, 264 3.395
.

Table iii.10: Collocations extracted from the handbook

it only occurs once was ‘formal description’. Using the data from the handbook it
turned up.

So what about the collocations such as ‘semantic network’ which the data from
the handbook doesn’t reveal? One way to discover these collocations is to use aux-
iliary data, such as a related handbook, or scientific articles from the same field
of science. The concept contains, after preprocessing, 511,881 words, which reveal
4238 collocations. A much bigger corpus will be needed to discover all the colloca-
tions we need.

5.4 Collocations in Related Articles on theWeb
There is an abundance of scientific papers available on the World Wide Web, and
some of them are easy to find using the present-day web search engines, such as
Google5. The point of these papers is that other researchers understand what is in
them, so they are bound to contain many common collocations.

I decided to use a very simple method to gather a data set from the web. For
every concept in the concept hierarchy I construct a query consisting of the con-

4p(1− p)≈ p, because p is very small, so 1−p≈ 1.
5http://www.google.com

“scriptie” — 2004/4/22 — 9:59 — page 38 — #50i
i

i
i

i
i

i
i

38 Chapter III Structured Information

collocation freq cf of the constituents t-score
huge semantic network 3 277, 10985, 6393 468.875
semantic network retrieval 3 10985, 6393, 1332 213.807
propositional semantic network 4 4502, 10985, 6393 155.048
semantic network 155 10985, 6393 85.562
.
modal logic 1387 6309, 38179 413.930
mathematical logic 569 5284, 38179 183.998
philosophical logic 309 1705, 38179 177.085
predicate logic 529 12629, 38179 107.777
hybrid logic 58 727, 38179 50.272
description logic 160 11580, 38179 31.025

Table iii.11: Collocations extracted from the world wide web

cept name with the switch ‘filetype:pdf ’ added to it. So the concept ‘modal
logic’ is translated to the query ‘filetype:pdf modal logic ’. I send all these
queries to Google, one by one, and gather all pdf documents in the top 10 of the
results.

This way I gathered 1.1gbs of pdf files, which after preprocessing yielded 358mbs
of raw text. After additional preprocessing, leaving only words that could possibly
be part of a sensible collocation, 128mbs of terms were left, corresponding with
about 21.7 million terms, roughly 40 times the size of the handbook. Using the
same extraction method I found 206,475 collocations, which is about 40 times the
number of collocations I found in the handbook.

This time, as you can see in figure iii.11, even ‘semantic network’ was extracted.
Even some kinds of logic not described in the concept hierarchy were discovered,
such as ‘hybrid logic’ and ‘description logic’. This suggests the use of these colloca-
tions as suggestions for terms that could be added to the concept hierarchy. If you
would like to use it for this purpose the list of discovered collocations is much too
long. There are too many irrelevant terms in the list such as ‘19th century’, ‘high
value’, and ‘final part’.

5.5 Restraining the List of Collocations
It could be possible to filter out the collocations that do not belong to the field
of logic and language by removing collocations extracted from an English text on
another subject. This is illustrated in figure iii.5.

Another, more viable option is to throw away all the collocations that do not

“scriptie” — 2004/4/22 — 9:59 — page 39 — #51i
i

i
i

i
i

i
i

Section 6 Exploiting Collocations 39

strong tea

Golgi system

Encyclopedia Britannica

Generic English
Collocations

next section

other hand Logic & Language
Collocations

modal logic

Gödel number

Figure iii.5: Removing the influence of English

contain a constituent from a certain set. This set can be a list of words you are
interested in, or even a topic. This is illustrated in figure iii.6, with the topic ‘the
semantic relation of two words with the same meaning’. This topic filtered out all
but collocations 435 from the list of 206,475. The resulting list of 435 collocations
is ofcourse polluted. Collocations like ‘new relation type’ are hardly interesting,
but this technique works a lot better than the previous one for filtering out odd
collocations like ‘static thing’, ‘norwegian salmon’, and ‘blue dust’.

I want to apply the collocations to improve the search results of the concept
hierarchy search engine, so I can use the topics as a restraint on the list of collo-
cations. I simply check for all pairs and triples of query words whether they form
a collocation that appears in the list. This can be done in a split second, because I
put all the collocations (6.5mbs) in a database, which stores them in a B-Tree.

6 Exploiting Collocations

This leaves the question How does one improve search results using collocations? One
possible way is to do ‘phrase retrieval’, where the collocations would be indexed as
terms. (Pohlmann and Kraaij, 1997)

I use the tf.idf weighting scheme to determine a concept’s score. The higher
the score, the more relevant the concept is supposed to be. When a concept con-
tains a collocation that appears in the topic, it is more likely to be relevant than a
concept that contains the same words that do not form a collocation. So the con-
cept with the collocation should get a higher score. I decide to multiply the score

“scriptie” — 2004/4/22 — 9:59 — page 40 — #52i
i

i
i

i
i

i
i

40 Chapter III Structured Information

two

Topic, written
in English

Logic & Language
Collocations

modal logic

Gödel number

semantic
relation

the
of

same

words
with

meaning

relation
algebra

Figure iii.6: Restraining the subject of the collocations

of the concept by a certain factor when it contains a collocation that appears in
the topic. Multiplication makes more sense than addition, because insignificant
words, i.e. words with a low tf.idf score, that make up a collocation should get a
lower absolute bonus, but the same relative bonus as significant words.

This shifts the question to How big should this factor be? This depends on the
number of documents in the collection, but also on how many other factors there
are. I will not only give collocations a bonus, but also exact matches, and matches
in the concept name versus matches in the gloss. The number of documents (i.e.
the number of concept names and concept glosses in the hierarchy, which is equal
to 529) lies between e6 and e7, so the idf score of a term lies between log e6/e6 = 0
and log e7/1 = 7. The idea is that the factors of the collocations; the exact matches;
and the word occurring in the concept name, combined are of the same mag-
nitude as the idf score. I decided 2 would be a reasonable value for each factor,
because 23 = 8 and 8 is slightly larger than 7, which means that all factors com-
bined can just outweigh any idf score. I think a higher combined bonus than 8
will not make much of a diVerence. A higher bonus could cause good documents
that do not benefit from the bonus to be pushed out of the top-10, which could
make the scores worse. To test this I will check whether giving any of the factors a
higher value improves anything. The results are shown in table iii.12. There is no
diVerence in the scores when a factor of 2 or 4 is used. This supports my intuition.

“scriptie” — 2004/4/22 — 9:59 — page 41 — #53i
i

i
i

i
i

i
i

Section 6 Exploiting Collocations 41

Inc. R-Precision Recall
TreeTagger baseline .67 .60
TreeTagger with collocations×2 .69 .62
TreeTagger with collocations×4 .69 .62

Table iii.12: Collocation preference factor results for concept retrieval

6.1 Evaluation of Collocation Preference

I tried out this way of exploiting collocations in combination with both Porter’s
stemmer and the TreeTagger lemmatizer. Previous experiments that tried to add
more linguistic knowledge to retrieval have been inconclusive. I expect colloca-
tions to improve scores.

NullHypothesis Collocations do not improve concept retrieval scores.

AlternativeHypothesis Collocations can improve concept retrieval scores.

The results are shown in table iii.13.

Inc. R-Precision Recall
TreeTagger baseline .67 .60
TreeTagger with collocations .69 .62
Porter’s stemmer baseline .69 .62
Porter’s stemmer with collocations .69 .62

Table iii.13: Collocation preference results for concept retrieval

For the stemmed run there is no diVerence at all in the scores when I apply
collocations. For the lemmatized run there is a small diVerence in the score, but
the diVerence is not large enough to be significant. So I have to accept the null
hypothesis.

6.2 Evaluation of ExactMatch Preference

I tried out combinations of exact match preference and collocation preference for
both types of morphological normalization. I expect exact match preference to
improve precision.

Null Hypothesis Exact match preference does not improve concept retrieval
scores.

“scriptie” — 2004/4/22 — 9:59 — page 42 — #54i
i

i
i

i
i

i
i

42 Chapter III Structured Information

AlternativeHypothesis Exactmatch preference can improve concept retrieval
scores.

The results are shown in table iii.14.

Inc. R-Precision Recall
TreeTagger baseline .67 .60
TreeTagger with exact match .71 .64
TreeTagger with coll. and exact. .73M .65
Porter’s stemmer baseline .69 .62
Porter’s stemmer with exact match .73 .65
Porter’s stemmer with coll. and exact. .72 .65

Table iii.14: Exact match preference results for concept retrieval

Exact match preference improves precision, but by itself the diVerence is not
significant. Together with collocation preference it attributes to a significant im-
provement over the baseline for the lemmatized runs. For all runs except the lem-
matized run with both collocation and exact match preference I have to accept the
null hypothesis. For the latter run I can accept the alternative hypothesis.

6.3 Conclusions
Stemming versus Lemmatization Runs that use no other techniques thanmor-
phological normalization benefit more from stemming than from lemmatization.
This corresponds to previous results on the clef englishmonolingual collection (Hollink
et al., 2004).
Collocation Bonusses and Lemmatization Runs that use both lemmatiza-
tion and collocations perform at least as good as runs that use stemming.
Exact Match Bonusses Runs that give concepts whose name literally match
the topic a bonus perform about 6% better on Incremental R-Precision and 8% on
Recall. Unlike collocation bonusses, exact match bonusses do not boost the score
of lemmatized runs to the same level as stemmed runs.
Collocation and Exact Match Preference As for the baseline, collocation
bonusses push the score of lemmatized runs up to the level of stemmed runs.
The Best Results The greatest improvements over the baseline are made by
the run that combines lemmatization with both collocation and exact match pref-
erence, shown in table iii.15. This run performs 28% better on Incremental R-
Precision and 30% better on Precision than the baseline. The statistical test used to

“scriptie” — 2004/4/22 — 9:59 — page 43 — #55i
i

i
i

i
i

i
i

Section 7 Exploiting Structure 43

determine significance of the results shown in table iii.15 is the sign test, as opposed
to the previous results in this chapter where I used the paired t-test. A discussion
about this decision can be found in subsection 5.2 in chapter ii.

Inc. R-Precision Recall
plain baseline .57 .50
TreeTagger baseline .67M .60M
TreeTagger with coll. and exact. .73N .65N

Table iii.15: Results for concept retrieval with lemmatization, and collocation and
exact match preference.

My final conclusion is that even though the improvements lemmatization, col-
location preference, and exact match preference make by themselves are not stag-
gering, sometimes even insignificant, the combination of these techniques works
very well.

7 Exploiting Structure

This section deals with what happens inside the box labelled Grouping for Visual-
ization in figure iii.2: Grouping the concepts before presenting them to the user.

Things get a little more complicated than plain relevant document retrieval
when you consider the relations concepts have with each other in the hierarchy.
Concepts inherit the information from their parents and make it more specific
in some way. For example, a ‘modal operator’ is a child of ‘modal logic’, and is
clearly part of modal logic, but only one of the many things that make up modal
logic. The opposite goes for parent concepts. They contain all the information of
their children, but are less specific. Queries have to be answered as precisely as
possible. The answer has to be general enough and also specific enough. When
the user asks for ‘modal logic’, returning ‘modal operator’ is too specific for his
needs, but returning ‘logic’ is too general. Often, as with ‘modal logic’, the concept
that matches the query best is the right concept, but sometimes things are more
complicated, as shown in figure iii.7. The graph shows concepts that match the
query semantic relation . Underneath the concept names you can see which
terms in that concept’s name or gloss match. In the case of the bottom three terms,
the entire query, which happens to be the collocation ‘semantic relation’, matches.

“scriptie” — 2004/4/22 — 9:59 — page 44 — #56i
i

i
i

i
i

i
i

44 Chapter III Structured Information

meaning relation
relation

synonymy
semantic relationantonymy

semantic relation

hyponymy
semantic relation

semantic paradox
semantic

child
child child

semantic network
semantic

Figure iii.7: Is having important relatives better than having talent?

7.1 Grouping Concepts from theHierarchy

What is the best concept to return in this setting? ‘meaning relation’, or one of its
children? There is no solution for this problem that works in all cases. Returning
all matching concepts ordered by their retrieval score is an option, but then closely
related concepts may appear far away from each other in the ranking that is pre-
sented to the user. This problem can be solved through grouping the returned
concepts by the relations they have with each other.

Figure iii.8 shows the rules I use to cluster the concepts. Matching concepts
are surrounded by a thicker box than non-matching concepts.

7.2 The Effect of Grouping

Grouping puts closely related concepts together in the ranking and adds context
concepts that might also be interesting.

In practice context nodes are always useful to show the user where the matches
appear in the ontology, e.g. ‘modal logic’ under ‘logic’ and not under ‘knowledge
representation’. This is shown in figure iii.9.

The quality of this information is very diYcult to assess, because a context
node does not need to be relevant to provide useful information about the location
of a concept in the hierarchy. Whether a context node is interesting to the user is a
subjective matter, because it depends on the user’s knowledge. The only right way
to assess the value of context nodes is through extensive user testing, which I will
not do in this thesis. For this experiment I will show the eVect of two assumptions.
The first being the assumption that any parent of a relevant concept is useful and

“scriptie” — 2004/4/22 — 9:59 — page 45 — #57i
i

i
i

i
i

i
i

Section 7 Exploiting Structure 45

logic

modal logic

logic
 modal logic

logic

modal logic temporal logic

logic
 modal logic
 temporal logic

logic

modal logic

modal
operator

modal logic
 modal operator

knowledge
representation

modal logic

logic

modal logic

logic
 modal logic
knowledge representation
 modal logic

knowledge
representation

modal logic

logic

modal logic

knowledge representation
& logic
 modal logic
 modal logic

1 2 3

4 5

1. Every matching concept should be clustered under its parent; this parent
concept shows the context of the concept.

2. Matching concepts with the same parent should be put together under that
common parent, ordered by their own score.

3. Every chain of parent-child related matching concepts should end in a non-
matching concept that shows the context of the chain.

4. Unrelated clusters are joined together as a forest, ordered by the maximum
score of the cluster.

5. When parents have the same children they are joined together and get the
highest of the two scores.

Figure iii.8: Concept grouping rules

“scriptie” — 2004/4/22 — 9:59 — page 46 — #58i
i

i
i

i
i

i
i

46 Chapter III Structured Information

logic

modal logic

temporal
logic

modal
operator

mathematics

Figure iii.9: Added context

the second that only relevant concepts are useful. When I show results of grouping
I will show the scores under both assumptions.

logic modal logic
modal

operator

modal logic
modal

operator
knowledge

representation

logic modal logic
modal

operator

knowledge
representation

Figure iii.10: Oedipus and modal logic

Ranking concepts under their parents can introduce duplicate concepts when
a concept has more than one parent. Rule number 5 tries to reduce the number of
duplicates by collapsing trees when they have the same children. Sometimes this
goes wrong. For example in Oedipuslike situations, where a child is a sibling of its
parent, shown in figure iii.10. My rules essentially make a generated submodel of
the hierarchy in which all worlds, concepts, either match the topic or have a child
that matches. This resulting model contains no cycles, it is a tree, and that means
it can contain duplicate concepts. I chose to do it this way because the search
engine needs to be responsive and taking out all duplicates while preserving the
structure takes exptime. The only thing that I will evaluate however is whether
or not the correct concepts have been found in the ranking, not in which form
they are presented to the user. So for the assessments I will ignore all duplicates,
because the ranking which I will evaluate is a set of concepts. This means that I
will not get a higher score for retrieving a relevant concept twice.

“scriptie” — 2004/4/22 — 9:59 — page 47 — #59i
i

i
i

i
i

i
i

Section 7 Exploiting Structure 47

tf.idf exact match &
collocation preferences

pick top-ngenerate
groups

flatten
groups

final ranking

intermediate
ranking

Figure iii.11: How a ranking is obtained after grouping

When generating a submodel you start with a set of worlds W to generate a
set of related worldsW′. You can choose these worlds to be all the concepts in the
ranking, which corresponds to the top-10 in my case because I only retrieve the
top-10 best concepts; or you can choose to use a smaller set, say the top-4 of the
ranking. The exact procedure is shown in figure iii.11. When you start with less
concepts the generated trees will be smaller. Smaller trees mean that the concepts
in at the top of the resulting ranking will be more diverse, since more small trees fit
in the top-n than large trees. This could be a good thing. Furthermore, the average
score of a smaller top-n set of concepts will be higher. That means the resulting
trees will have been generated based on a set of concepts with a higher average
score than when you start with more concepts. This could be beneficial to the
resulting ranking.

7.3 Evaluation of Grouping

I will now test the impact grouping has on concept retrieval scores. The first thing
I will examine is the eVect of grouping by itself on the stemmed and the lemma-
tized baseline. For this first test I will use grouping on the top-10 of the ranking.
I expect grouping to improve Recall, and in some cases, where grouping could
disambiguate the query terms, to even improve Incremental R-Precision.

NullHypothesis Grouping does not improve concept retrieval scores.

AlternativeHypothesis Grouping can improve concept retrieval scores.

The results are shown in table iii.16.
When all context is counted as irrelevant, Incremental R-Precision is slightly

lower and Recall slightly higher when grouping is applied. The eVects are stronger
for the lemmatized run than for the stemmed run. For this case I have to accept
the null hypothesis.

“scriptie” — 2004/4/22 — 9:59 — page 48 — #60i
i

i
i

i
i

i
i

48 Chapter III Structured Information

context irrelevant context relevant
Inc. R-Prec. Recall Inc. R-Prec. Recall

TreeTagger baseline .67 .60 .53 .38
TreeTagger with grouping .62 .64 .68N .63N
Porter baseline .69 .62 .54 .38
Porter with grouping .65 .62 .67M .62N

Table iii.16: Grouping results for concept retrieval

When context is counted as relevant, the lemmatized run achieves a material
improvement over the baseline for both Incremental R-Precision and Recall. The
stemmed run is only significantly better for Incremental R-Precision. For this case
I can accept the alternative hypothesis.

I expect that in reality, where only some context is relevant, a significant im-
provement can be achieved using grouping.

7.4 Evaluation of Grouping on a Smaller Set
Now I will compare grouping performed on the top-10 to grouping on the top-4 of
the initial ranking. My intuition is that grouping on the top-4might have a better
Incremental R-Precision.

Null Hypothesis Grouping on the top-4 of the initial ranking does not per-
form better than grouping on the top-10.

Alternative Hypothesis Grouping on the top-4 is better than grouping on
the top-10.

The results are shown in table iii.17.

context irrelevant context relevant
Inc. R-Prec. Recall Inc. R-Prec. Recall

TreeTagger, grouping on top-10 .62 .64 .68 .63
TreeTagger, grouping on top-4 .64 .48H .67 .50H
Porter, grouping on top-10 .65 .62 .67 .62
Porter, grouping on top-4 .66 .48H .66 .48H

Table iii.17: Grouping results for concept retrieval

Grouping on a smaller set has slightly better Incremental R-Precision, but the
diVerence is not significant. Recall however is materially worse for grouping on

“scriptie” — 2004/4/22 — 9:59 — page 49 — #61i
i

i
i

i
i

i
i

Section 7 Exploiting Structure 49

the top-4 than for grouping on the top-10. So for all cases I have to accept the null
hypothesis.

The price to pay for a slightly higher Incremental R-Precision is too high, so for
the rest of the experiments I will continue with grouping on the top-10.

7.5 Evaluation of Grouping with Preferences
I will now test how collocation and exact match preference aVects runs that use
grouping. I expect the cumulative result of collocation and exact match preference
to give a significant improvement over the run with only grouping.
Null Hypothesis Collocation and exact match preference does not improve
concept retrieval scores for runs that use grouping.
AlternativeHypothesis Collocation and exact match preference can improve
concept retrieval scores for runs that use grouping.

The results are shown in table iii.18.

context irrelevant context relevant
Inc. R-P. Recall Inc. R-P. Recall

TreeTagger with grouping .62 .64 .68 .63
TreeTagger with grouping and pref ’s .69M .66M .74M .67M
Porter with grouping .65 .62 .67 .62
Porter with grouping and pref ’s .67 .65 .70 .65

Table iii.18: Collocation and exact match preference results for concept retrieval
runs that use grouping

On all aspects, the lemmatized run benefits significantly from collocation and
exact match preference, so for the lemmatized run I can accept the alternative
hypothesis. The stemmed run however shows no significant improvement at all,
so in this case I have to accept the null hypothesis.

My intuition was only correct for the lemmatized run. The stemmed run stayed
behind.

7.6 Conclusions
Stemming versus Lemmatization The previous experiment revealed that col-
location and exact match bonusses work better for lemmatized runs than for stem-
med runs. The results of this experiment show the same behaviour. After applying
grouping as a reranking method all the best runs are lemmatized runs. My guess is

“scriptie” — 2004/4/22 — 9:59 — page 50 — #62i
i

i
i

i
i

i
i

50 Chapter III Structured Information

that lemmatization prepares topics better for combining with other evidence than
stemming.
Size of the Grouping Set Runs that generate the groups based on the top-4
of the intermediate ranking score slightly higher on Incremental R-Precision and
much lower on Recall than those based on the top-10. This can be explained by the
fact that all relevant concepts that are not in the top-4 and that are also not related
to a concept in the top-4 are lost.
Collocation & Exact Match Bonusses and Grouping Grouping changes
nothing about the relation between the scores of runs with only exactmatch bonusses
and those with both bonusses. Since lemmatized runs work better with grouping
than stemmed runs it was to be expected, given the results of the previous experi-
ment, that the combination of both bonusses works best after grouping.
The Best Results The greatest improvements over the baseline are made by the
lemmatized run that uses collocation and exact match preference combined with
grouping on the top-10, shown in table iii.19

context irrelevant context relevant
Inc. R-P. Recall Inc. R-P. Recall

plain baseline .57 .50 .45 .30
TreeTagger with grouping and pref ’s .69N .66N .74N .67N

Table iii.19: Final results for concept retrieval

8 Discussion
I wanted to get high precision for a domain-specific search task with very short
documents and even shorter queries while retaining a decent recall. The combina-
tion of lemmatization, collocations, exact match bonusses, and grouping worked
very well at achieving that goal. Furthermore I came across the nice corollary that
the collocations mined from the internet could be used to help ontology builders.

“scriptie” — 2004/4/22 — 9:59 — page 51 — #63i
i

i
i

i
i

i
i

Chapter IV

Semi-structured Information
Connecting the handbook to the concept hierarchy

Between structured information such as databases and free text found in most
books lies something called semi-structured information. Semi-structured infor-
mation is free text with some added information about the structure or the mean-
ing of the text, e.g. annotations that indicate chapters and sections or emphasized
text. Examples of semi-structured information are xml and LATEX. The majority of
the World Wide Web is semi-structured information (Abiteboul et al., 1999), and
so is the Handbook of Logic & Language, which is written in LATEX. An excerpt from
the handbook is shown in figure iv.1.

LATEX documents have a tree-like structure, like xml, with one ormore layers of
annotation surrounding leaves that contain the actual (free) text. This is illustrated

\paragraph{ Categorical combinators and CCG. }
To round off the discussion of
\keyab{ Lambek calculus }{ categorical combinators } the axiomatic
presentation, we present the logics {\bf NL, L, NLP, LP } with
a proof term annotation, following Lambek~(\citep{ LAMBEK88}).
The proof terms -- categorical combinators -- are motivated
by Lambek’s original category-theoretic interpretation of the
type logics. \key{ category theory }
\keyab{ Lambek calculus }{ category-theoretic interpretation }
The category-theoretic connection is not further explored here,
but the combinator proof terms will be used in later sections as
compact notation for complete deductions.

Figure iv.1: An excerpt from the Handbook of Logic & Language.

51

“scriptie” — 2004/4/22 — 9:59 — page 52 — #64i
i

i
i

i
i

i
i

52 Chapter IV Semi-structured Information

chapter

section section section

subsection

subsection

subsection
subsectionparagraph

paragraph
With the book . . .

A natural division . . .

Situation Theory has . . .

It is a commonplace that . . .
We are interested in . . .

Information processed . . .

Our idea is to . . .

book

Figure iv.2: Nested annotations in LATEX.

in figure iv.2. Commands like \section and \paragraph group text about the
same subject together on diVerent levels. The text in the example, figure iv.1, is
a paragraph about Lambek calculus. It can be seen as an instance of the concept
‘Lambek calculus’ in the concept hierarchy.

1 AutomaticHyperlinking
Building indices for books is a diYcult, laborious, and therefor costly process for
publishers. Often, the process of building an index holds up the process of pub-
lishing a book in mid-production, especially when there is more than one author
involved. In this chapter I will discuss the automation of index creation to assist
indexers and speed up the process.

If a human wants to find the places in the handbook that deal with each con-
cept in the hierarchy he will either have to remember all the concepts at the same
time or he will have to read through the book more than once. For a small book
this might be feasible, but imagine having to do this for an entire library, or for all
the concepts in the subject hierarchy of Yahoo! and all the web pages indexed by
Yahoo!.

Therefor I will try to do this automatically in this chapter by searching for
instances of concepts in the handbook. I will do this with a similar search engine
as in the previous chapter except now the concepts are the queries instead of the
documents and my documents are pieces of the handbook.

In this chapter I will evaluate three techniques that could improve the retrieval
performance for the automatic hyperlinking task. I will do that by setting a base-

“scriptie” — 2004/4/22 — 9:59 — page 53 — #65i
i

i
i

i
i

i
i

Section 1 AutomaticHyperlinking 53

line and measuring the improvements made by (combinations of) these three
techniques. Before I describe the techniques and their results I will briefly dis-
cuss two main research problems connected to the task of automatic hyperlinking
to semi-structured information.

1.1 Entry Points
The first problem is how to decide which locations you want to link to. In the case
of the handbook there is already an index of where certain concepts are mentioned
in the handbook, this is the index in the back of the book. This index only lists the
numbers of the pages where a concept is mentioned, but it sais nothing about the
focus of the concept. The entire chapter might have to do with the concept, or it
might only be mentioned as a reference.

1.2 Overlapping Units
This brings us to the second problem: Finding the focus of a certain topic in
a semi-structured document. i.e. the annotation with the right size to include
enough about the topic, but small enough to keep from including too much else.
(Kazai et al., 2002)

If a paragraph is about Lambek calculus then the section that contains it is
also about Lambek calculus. Indeed, every containing unit on the path from the
text about Lambek calculus to the root of the tree, i.e. the entire handbook. So
which unit should be linked to the concept? If you choose the unit too close to
the root then the subject might be closer to another concept, e.g. ‘Categorial Type
Logics’, but if you choose the unit too close to the text then you might just end up
with an introductory paragraph on Lambek calculus and miss out on important
information that follows it.

This problem is also encountered in the inex xml retrieval evaluation. (Kamps
et al., 2003) In xml retrieval evaluation it frustrates the evaluation measures, be-
cause the payoV for just returning all the units from the relevant text to the root
of the tree is higher than the penalties for doing so. This is explained in detail in
an article by Kazai, Lalmas, and de Vries. (Kazai et al., 2004)

1.3 Baseline
I decided, based on the results of chapter iii to use the TreeTagger lemmatizer for
all my runs. For the baseline I will use FlexIR with the weighting schemes tf.idf and
Okapi BM25.

“scriptie” — 2004/4/22 — 9:59 — page 54 — #66i
i

i
i

i
i

i
i

54 Chapter IV Semi-structured Information

\section{ Linguistic inference: The Lambek systems \label{ simple }}
\key{ linguistic inference }
\key{ Lambek calculus }
In the following sections we present ...

\subsection{ Gentzen calculus, cut elimination and decidability }
\key{ Gentzen calculus }
\keyab{ Gentzen calculus }{ cut elimination and decidability }
The axiomatic presentation ...

Figure iv.3: \key commands refer to the smallest enclosing unit.

As my topic set I take all the concepts in the hierarchy that appear literally in
the index of the handbook. This automatically gives me 143 topics, with on average
1.5 words. A list of these topics can be found in appendix A, section 2.

For the assessment of the topics I will use the annotations that were used to
automatically create the index. In the LATEX code these are macro’s such as \key

and \keyab . Each topic has on average 3 of these references in the book. The
index commands usually refer to the smallest enclosing unit, which can be of any
size, e.g. a chapter, subsection, etc. I choose to see only that unit as relevant to the
index key. For example in figure iv.3 only the subsection is relevant to the concept
‘Genzen calculus’. I use these units as my gold standard of what to return for each
topic.

Evaluating overlapping units properly is diYcult. For the task of automatic
hyperlinking I would like to have no overlapping units in my rankings, so I return
at most one unit per path from a text leaf to the root of the tree. I choose to return
the highest ranking unit. I do this with a simple algorithm that walks through a
ranking from top to bottom and remember what it has seen. If it encounters units
that are descendants or ancestors of a unit it has already seen they are removed.
This is illustrated in figure iv.4. Since rankings are sorted by score this eliminates
only lower scoring units than those already seen.

Since the number of relevant documents diVers per topic, depending on how
many index entries there are for the concept, I have to use an evaluation measure
that takes this into account. Like in chapter iii I choose to use Incremental R-
Precision for my assessments. To give an impression of how many documents are
outside the top-R I also measure Recall. To show howmany times I chose to return
the wrong unit (i.e. the section when I should have returned the subsection) I will
also show Incremental R-Precision and Recall when I allow returning more than
one unit per path. The results of the baseline are shown in table iv.1.

As you can see in table iv.1, the diVerences between tf.idf and Okapi are not

“scriptie” — 2004/4/22 — 9:59 — page 55 — #67i
i

i
i

i
i

i
i

Section 1 AutomaticHyperlinking 55

Lambek calculus

section

chapter

book

subsection

paragraph

chapter

section

Categorial Type Logics

Grammatical composition
Recursion theory

Figure iv.4: Eliminating overlapping units from the ranking.

one per path more per path
Inc. R-Precision Recall Inc. R-Precision Recall

tf.idf .35 .63 .34 .89
Okapi .33 .64 .32 .86

Table iv.1: Automatic hyperlinking baseline results.

significant. In the ranking we are interested in, the ‘one per path’ ranking, tf.idf
seems to do slightly better at precision, while Okapi does slightly better at Recall
in the top of the ranking. Since I want high precision I continue my experiments
with tf.idf.

1.4 Doing Better than the Baseline
In the rest of this chapter I will try three things to do better than the baseline.

1. I will try to use the fact that I am searching in semi-structured data and not
free text, by exploiting LATEX annotations. This is discussed in section 2.

2. As in chapter iii, I will try if it is possible to get benefits from collocations.
This is shown in section 3.

3. I will try to use concept hierarchy based query expansion to fight ambiguity.
This is discussed in section 4.

“scriptie” — 2004/4/22 — 9:59 — page 56 — #68i
i

i
i

i
i

i
i

56 Chapter IV Semi-structured Information

The domain W is the set of {\em linguistic resources } .

Figure iv.5: Emphasis on a key phrase.

2 Exploiting Annotations
The first way I will try to outperform the baseline is by using the characteristics
of the documents. The documents are semi-structured information. That means
that there is more information in them than just the words and frequencies. Some
words are more equal than others. For example words in titles of section and the
like could be more representative of the subject of the section than words in the
rest of the section.

Experiments with html tags (Cutler et al., 1997) have shown that one’s intu-
itions cannot always be trusted on which annotations are useful. Titles in html
documents are often something like ‘Welcome!’ or ‘Page 2’. I suspect this might
not be the case for the Handbook of Logic & Language, where the sections are only
used to separate subjects from each other.

The html study also shows that emphasis is also not to be trusted. I expect
that the opposite might be true for the handbook, where emphasis is frequently
used to stress key phrases like in figure iv.5.

I will now test if these intuitions are true by formulating a null hypothesis and
an alternative hypothesis about text in titles and emphasis and testing the validity
of these hypotheses by comparing search engines that exploit titles and emphasis
to the baseline.

Null Hypothesis Titles and emphasized text are just like other words in the
text and do not represent the subject better than other words in the documents.
Preferring documents that contain query terms in the title or in emphasis will not
improve retrieval results.

Alternative Hypothesis It is possible to get better performance by exploiting
title or emphasis annotations.

The way I will implement the preference for terms with a certain annotation
is by increasing the score of the document: If a document starts with a title, like
sections do, and that title contains the literal query I double the document’s score.
If it contains nothing else, i.e. if it is exactly the same as the query, I double it again.
If a document contains \emor \emph commands that literally contain the query I
double the score. If the emphasis is on nothing but the query I double it again.

The results of the experiments with title and emphasis preference are shown
in table iv.2.

“scriptie” — 2004/4/22 — 9:59 — page 57 — #69i
i

i
i

i
i

i
i

Section 3 ExploitingWord Order with Collocations 57

Inc. R-Precision Recall
baseline .35 .63
title preference .41N .67N
emphasis preference .33 .63
title & emphasis preference .39M .66M

Table iv.2: Runs that exploit title and emphasis annotations.

There is no significant diVerence between runs that prefer emphasized text
and those that do not, but there is a material diVerence for those that prefer titles.
So for emphasis I accept the null hypothesis and for titles I accept the alternative
hypothesis.

3 ExploitingWord Order with Collocations

In the previous chapter I recognized collocations in the descriptions of the con-
cepts and tried to use these to improve retrieval results. I mentioned that all con-
cept names are either nouns or noun-collocations. My queries are now concept
names, so every query with more than one term is a collocation. That means that
for this search task finding collocations in documents is the same as finding literal
appearances of the query in the documents.

The way I will implement this is the same as in the previous chapter. If a doc-
ument contains all the terms of the query and they appear literally as in the topic,
i.e. if the document contains the literal query, I double the score.

For searching in the hierarchy the documents were so short that I did not have
to worry about what to do when they contained more than one collocation and I
just doubled a document’s score for every collocation I found. With the handbook
that is diVerent. Documents that contain a collocation are very likely to contain it
more than once, so I choose to only double the score once per document.

As with title and emphasis preference I will formulate a null hypothesis and an
alternative hypothesis and test them by comparing search engine runs.

NullHypothesis Considering collocations does not improve retrieval results.

Alternative Hypothesis It is possible to get better performance by exploiting
collocations.

The results of the experiments with collocation preference are shown in ta-
ble iv.3. As you can see there is no significant diVerence between the baseline and

“scriptie” — 2004/4/22 — 9:59 — page 58 — #70i
i

i
i

i
i

i
i

58 Chapter IV Semi-structured Information

Inc. R-Precision Recall
baseline .35 .63
collocation preference .35 .63
title preference baseline .41N .68N
title and collocation preference .46N .68N
emphasis preference baseline .33 .63
emphasis and collocation preference .33 .63

Table iv.3: Runs that exploit collocations.

runs that only exploit collocations. So for collocation preference by itself I have to
accept the null hypothesis.

However when I combine title preference with collocation preference there
is a material diVerence with the baseline and even with the title preference only
run. So for runs that use title and collocation preference I accept the alternative
hypothesis. For combined emphasis and collocation preference I have to accept
the null hypothesis.

These results can be explained as follows. For preference to work there has to
be some information about the subject missing in the baseline that is corrected by
the bonus. Apparently the literal occurrence of the query in a document’s body or
emphasized text does not say more about a document’s probability of being rel-
evant to the query than its tf.idf score. While the literal occurrence of the query
in both a document’s title and body is disproportionately strong evidence of rele-
vance to the topic.

4 Exploiting Concept Relations
Since my queries are concepts that come from a hierarchy I know more about
them then just their name. I also know their relations to other concepts in the
hierarchy. Many concept names such as ‘reference’ and ‘category’ are highly am-
biguous. The relations they have with other concepts should tell more about their
meaning. For example ‘reference’ is a child of ‘semantics’ and ‘category’ is a child
of ‘formal language theory’. In this section I will try to use query expansion for
disambiguation.

There are two opposing forces at work when you use query expansion. On the
one hand precision should improve when you add more information to the query,
because it disambiguates the query, but on the other hand the added terms can
cause ‘topic drift’, which means that it dilutes the meaning of the query, which

“scriptie” — 2004/4/22 — 9:59 — page 59 — #71i
i

i
i

i
i

i
i

Section 4 Exploiting Concept Relations 59

causes bad precision. This makes query expansion a tricky practice.

4.1 Expanding with Parents and Children
I will try a few simple query expansion strategies based on the hierarchy.

1. add the parents’ names to the query

2. add the parents’ names to the query, but let them weigh half as strong as the
concept’s own name.

3. add the children’s names to the query

4. add the children’s names to the query, but let them weigh half as strong as
the concept’s own name.

5. add the parents’ and children’s names to the query

6. add the parents’ and children’s names to the query, but let them weigh half
as strong as the concept’s own name.

As with the previous experiments my null hypothesis will be that there is no sig-
nificant benefit to be gotten from these techniques and my alternative hypothesis
is that there is.

The results are shown in table iv.4. Obviously there are more topics that are
hurt by this query expansion than that benefit from it. So my null hypothesis
holds.

Inc. R-Precision Recall
title & coll. baseline .46 .68
parents .36H .52H
parents half weight .38H .59H
children .40H .60H
children half weight .40H .59H
parents and children .35H .49H
parents and children half weight .36H .53H

Table iv.4: Runs that exploit collocations.

It may seem impossible that adding terms can hurt Recall, but that can be
explained by the fact that longer queries favor larger units, e.q. chapters instead
of subsections. When a large unit is picked high up in the ranking many possibly

“scriptie” — 2004/4/22 — 9:59 — page 60 — #72i
i

i
i

i
i

i
i

60 Chapter IV Semi-structured Information

relevant units are removed from the ranking to ensure that only one unit per path
is retrieved. This is illustrated in figure iv.6.

section

chapter

subsection

paragraph
section

subsection
subsection

Figure iv.6: Big units eliminate many descendants from the ranking.

4.2 The Response of Certain Topics to Query Expansion

I will now show a ranking of one of the experiments and show which topics benefit
from query expansion and which are hurt by it. This might help to come up with
a solution to improve the results.

‘quantification’ M, added: ‘formal semantics’, ‘first order logic’.

In logic ‘quantification’ is very ambiguous. It is clear that ‘formal semantics’
and ‘first order logic’ disambiguate it.

‘context’ M, added: ‘knowledge representation’.

idem.

‘update’ M, added: ‘belief revision’.

idem, ‘update’ is even outside of logic a very ambiguous term.

‘donkey’ H, added: ‘animal’.

In semantics it is common practice that donkeys are just things that are hit
by farmers. ‘animal’ causes topic drift in this case.

‘modal logic’ H, added: ‘knowledge representation’, ‘symbolic logic’, ‘logic’.

‘logic’ is in the top-10 of the most common words in the handbook. That
means adding ‘logic’ causes serious topic drift.

“scriptie” — 2004/4/22 — 9:59 — page 61 — #73i
i

i
i

i
i

i
i

Section 4 Exploiting Concept Relations 61

‘ellipsis’ H, added ‘grammatical constituent’.

The concept ‘ellipsis’ in itself is quite unique in the book. If you add any-
thing to a topic that contains a good discriminator you are bound to cause
topic drift.

My conclusion from these examples is that the results might improve if I apply
query expansion only in certain cases. Like when the average idf value of the query
words before expansion is low. This way queries that already contain a good dis-
criminant will remain pure, while ambiguous queries might benefit from the dis-
ambiguating eVect of the query expansion.

4.3 Correlations with the Reaction to Query Expansion

To see if this is possible at all I calculated the average idf of all queries that got a
significant benefit from query expansion and those that were significantly hurt by
it and the idf of those that were not influenced significantly. The results are shown
in table iv.5.

Unfortunately the average idf of queries that react well and those that react
poorly is nearly the same. This and the fact that there is about an equal number of
them makes that idf can not pick out the right topics.

I tried the same for the average idf of the added query expansion terms. To see
if I can detect when added terms introduce topic drift. This showed relatively low
values for unaVected topics and relatively high values for topics that benefit and
those that are hurt. Again the diVerence between both sides is not significant.

The average query length of all types of queries is the same.

average idf
benefit average idf of expanding terms average query length

N 1.942 1.544 1.417
M 1.484 0.921 1.500
– n/a 1.330 1.523
O 2.009 n/a n/a
H 2.137 1.484 1.512

Table iv.5: Query properties versus their reaction to query expansion.

I also looked at the way the tf.idf values change from the top to the bottom of
the ranking. I think the crude, untuned, way of simply giving documents that are
‘good’ a bonus destroys the evidence needed for proper analysis of the ranking.

“scriptie” — 2004/4/22 — 9:59 — page 62 — #74i
i

i
i

i
i

i
i

62 Chapter IV Semi-structured Information

Predicting when to use query expansion and when not to is very hard. Amati has
shown that it is possible however with a solid probabilistic foundation (Amati
et al., 2004). A good probabilistic retrieval model such as Okapi is more suitable
for such analysis than tf.idf.

5 Discussion
I wanted to achieve a high precision for the task of automatically generating hy-
perlinks to places in the handbook. I successfully applied collocation preference in
conjunction with exploiting title annotations. I attempted to use the structure of
the concept hierarchy for query expansion, but this yielded only negative results.
Voorhees’ work on query expansion using WordNet (Voorhees, 1993) has shown
the same results. Based on the work of Amati (Amati et al., 2004) and (Xu and
Croft, 1996) however I expect that good results can be achieved with a more care-
ful approach to query expansion.

“scriptie” — 2004/4/22 — 9:59 — page 63 — #75i
i

i
i

i
i

i
i

Chapter V

Conclusion

1 Concept Retrieval
In chapter iii I tackled the task of providing good random access to an ontology
to solve some problems users can face when they browse through the ontology. To
recapitulate, the problems I addressed are listed below.

• The user does not know where to look for a certain concept. For example,
he is looking for ‘modal logic’ and does not know whether he should search
in the branch ‘philosophy’ or ‘mathematics’.

• The user does not know the name of the concept he is looking for. This can
be the case when the user is looking for the logic used to describe knowledge
and belief, and he has no idea that this is called ‘epistemology’.

• The ontology is so large that it simply takes forever to find what the user is
looking for.

I chose to solve these problems by creating a search engine for concept re-
trieval.My solution is very similar to thehaircut hybrid information retriever (Shah
et al., 2002b,a; Mayfield and Finin, 2003). The main diVerence between my search
engine and haircut is that haircut uses reasoning to filter out irrelevant con-
cepts, while I use reasoning to group concepts together to improve the quality of
the resulting ranking without discarding results.

To try out which techniques to add to my search engine I set up a basic search
engine and tried to improve its performance using three techniques. Two word

63

“scriptie” — 2004/4/22 — 9:59 — page 64 — #76i
i

i
i

i
i

i
i

64 Chapter V Conclusion

order based techniques: collocation preference and exact match preference; and
one ontology based technique: grouping concepts by their relations. To see if these
techniques improved search results I tested them on the LoLaLi concept hierar-
chy, described in section 2 of chapter iii. In the following two subsections I will
recapitulate the results I achieved.

1.1 Concept Retrieval andWord Order
In section 6 of chapter iii I examined the influence collocation and exact match
preference has on concept retrieval scores. The results are summarized in table v.1.
The significance test for these results has been done using the sign test.

Inc. R-Precision Recall
plain baseline .57 .50
plain with coll. and exact. .62 .55
TreeTagger baseline .67 .60
TreeTagger with coll. and exact. .73N .65N
Porter’s stemmer baseline .69 .62
Porter’s stemmer with coll. and exact. .72 .65N

Table v.1: Collocation and exact match preference results for concept retrieval

My conclusion is that even though the improvements lemmatization, collo-
cation preference, and exact match preference make by themselves are not signif-
icant, sometimes even insignificant, the combination of these techniques works
very well. Even though stemming seemed to give the best results at first I achieved
the best results using the TreeTagger lemmatizer. It is not clear to me why this is
the case, but I got the same result in chapter iv for semi-structured data retrieval.
I think it would be interesting to further investigate this phenomenon.

1.2 Concept Retrieval and Concept Relations
In section 4 of chapter iii I looked at the impact of grouping the retrieved concepts
by their relations on concept retrieval scores. The results were very good. Table v.2
shows an overview of the resulting scores. The statistical test used in this table is
the sign test.

Grouping proved to significantly improve retrieval performance, even under
the assumption that concepts that show the context of relevant concepts are irrele-
vant. This assumption is too pessimistic. In practice context is a valuable source of
knowledge for users. In this thesis I did not go into detail about user interaction,

“scriptie” — 2004/4/22 — 9:59 — page 65 — #77i
i

i
i

i
i

i
i

Section 2 AutomaticHyperlinking 65

context irrelevant context relevant
Inc. R-P. Recall Inc. R-P. Recall

plain baseline .57 .50 .45 .30
TreeTagger with grouping and pref ’s .69 .66N .74N .67N

Table v.2: Final results for concept retrieval

but there is much research to be done on which context is valuable to users and
which context is not. Also, I did not look at the various types of relations that exist
in the concept hierarchy. Exploiting various relations in diVerent ways might yield
even better results, since much of the semantics of the concept hierarchy lies in the
types of these relations.

1.3 Concept Retrieval Conclusion
I wanted to achieve high precision for a domain-specific search task with very
short documents and queries while retaining a decent recall. The combination
of lemmatization, collocations, exact match bonusses, and grouping worked very
well at achieving that goal. I did not only achieve high precision, but also high
recall. I think this is due to the fact that the techniques I use are of a ‘rewarding’
as opposed to a ‘punishing’ nature. I gave bonuses to good documents instead of
removing bad documents, which preserved recall while boosting precision.

Apart from achieving my goals I also came across a few promising key phrase
extraction techniques in section 5 that use collocations and relative frequencies. In
this thesis I only described detecting key phrases. I did not look into single noun
phrases, i.e. keywords, because what I wanted to achieve using the detected phrases
is to add a sense of word order to retrieval where I thought it was necessary. Single
noun keyword detection is an interesting task however and the resulting keywords
might prove to be as useful as the collocations I detected in section 5 of chapter iii.
One possible application of keyword and key phrase extraction outside the scope
of this thesis is to assist ontology builders with enumerating the concepts needed
to build an ontology.

2 AutomaticHyperlinking
In chapter iv I tackled the problem of automatically populating the concept hi-
erarchy with instances. This is similar to automatic index construction for semi-
structured information.

“scriptie” — 2004/4/22 — 9:59 — page 66 — #78i
i

i
i

i
i

i
i

66 Chapter V Conclusion

I tried to solve this problem using information retrieval techniques, some of
which I introduced in chapter iii. I tried ontology based query expansion, exploit-
ing word order with collocations and like other search engines for semi-structured
information (Cutler et al., 1997; Kamps et al., 2003) I tried to treat the text with
various annotations diVerently.

In subsection 2.1 I will discuss my findings concerning the exploitation of word
order and annotations and in subsection 2.2 I will discuss the results of ontology
based query expansion.

2.1 AutomaticHyperlinking, Annotations andWord Order

The results I achieved by exploiting collocations and some of the annotations of
the LATEX code are shown in table v.3. The statistical significance shown in this
table was tested using the sign test.

Inc. R-Precision Recall
baseline .35 .63
collocation preference .35 .63
title preference baseline .41 .68
title and collocation preference .46 .68N
emphasis preference baseline .33 .63
emphasis and collocation preference .33 .63

Table v.3: Runs that exploit collocations.

There is no significant diVerence between the baseline and runs that only ex-
ploit collocations or the runs that only exploit annotations. When I combine title
and collocation preference however, I achieved a significant improvement in Re-
call.

2.2 AutomaticHyperlinking and Concept Relations

I was unable to get any improvements using ontology based query expansion. The
results in table iv.4 in section 4 of chapter iv show many material decreases of the
scores using the paired t-test. Using the sign test, this picture, shown in table v.4,
looks much more optimistic. This is due to the fact that query expansion seriously
hurt only a few topics, while it did absolutely nothing to the majority of the topics.

My conclusion is that I treated the task of query expansion too roughly. Query
expansion needs to be tuned very carefully to yield good overall results. I think my

“scriptie” — 2004/4/22 — 9:59 — page 67 — #79i
i

i
i

i
i

i
i

Section 2 AutomaticHyperlinking 67

Inc. R-Precision Recall
title & coll. baseline .46 .68
parents .36 .52
parents half weight .38 .59
children .40 .60
children half weight .40 .59
parents and children .35 .49
parents and children half weight .36 .53

Table v.4: Runs that exploit collocations.

negative results are not representative of ontology based query expansion. I expect
that much better results can be achieved with a more careful approach.

2.3 AutomaticHyperlinking Conclusion
I wanted to achieve a high precision for the task of automatically generating hy-
perlinks to places in the handbook. The best Incremental R-Precision I was able to
get was .46, which was a great improvement over the baseline, but which, when
interpreted absolutely, is kind of disappointing. The high Recall value of .68shows
that I choose to put the wrong concepts at the top of the ranking.

I expect the mediocre results are partly due to the fact that I used automatic
assessments in the form of \key commands in the LATEX code. I assumed that the
only correct annotation to retrieve, i.e. the best ‘focus’, was the annotation that
directly surrounds the command. This might have been a wild assumption. What
my scores represent now is not how relevant the retrieved sections are, but how
closely they match the ones that were chosen to be put in the index by the creator
of the index in the back of the handbook. If the quality of the index is low, then
a very good retrieval system can never get high scores. For trustworthy results
human assessment should have been done.

“scriptie” — 2004/4/22 — 9:59 — page 68 — #80i
i

i
i

i
i

i
i

68 Chapter V Conclusion

“scriptie” -- 2004/4/22 -- 9:59 -- page 69 -- #81i
i

i
i

i
i

i
i

Appendix A

Topics

1 ConceptHierarchy Topics
1 any kind of modal logic
2 modal logic used for knowledge representation
3 Kripke model
4 deodontic logics
5 logic used to describe time
6 what is a function word?
7 a term, as used in natural language processing
8 what is a sentence exactly?
9 semantic relation
10 ambiguity
11 categorial type logics
12 montague grammar
13 sentence ambiguity
14 part of speech
15 formal logical semantics
16 logic
17 logical operator
18 truth function
19 examples of paradoxes
20 recursion theory
21 turing machines
22 automatas
23 work of Cantor
24 aleph 0

69

“scriptie” -- 2004/4/22 -- 9:59 -- page 70 -- #82i
i

i
i

i
i

i
i

70 Appendix A Topics

2 AutomaticHyperlinking Topics

1 saturation
2 cylindric algebra
3 residuation
4 property theory
5 quantification
6 definability
7 donkey
8 category
9 proof nets
10 algebra
11 modal logic
12 subsumption
13 subformula property
14 frame problem
15 proof theory
16 presupposition
17 compositionality
18 correspondence theory
19 interpolation
20 operator
21 recursively enumerable language
22 natural deduction
23 linear logic
24 indexicality
25 situation semantics
26 combinatory logic
27 epistemic logic
28 stability
29 artificial intelligence
30 structural rules
31 update
32 formal language theory
33 category theory
34 functional composition
35 ellipsis
36 model
37 ambiguity
38 underspecification
39 syntax
40 model theory

“scriptie” -- 2004/4/22 -- 9:59 -- page 71 -- #83i
i

i
i

i
i

i
i

Section 2 AutomaticHyperlinking Topics 71

41 s4
42 intension
43 context free language
44 conditional logic
45 universal algebra
46 type
47 phrase structure grammar
48 prolog
49 completeness
50 unicorn
51 polymorphism
52 dynamic logic
53 determinacy
54 partiality
55 context
56 kripke semantics
57 extension
58 situation
59 consistency
60 quantifying in
61 relevance logic
62 hypothetical reasoning
63 deontic logic
64 unification
65 liar paradox
66 relative clause
67 structural ambiguity
68 discourse
69 knowledge representation
70 type shifting
71 ordering
72 anchor
73 lattice
74 domain theory
75 intensionality
76 scope
77 set theory
78 definite description
79 antecedent
80 intuitionistic logic
81 pragmatics
82 feature logic

“scriptie” -- 2004/4/22 -- 9:59 -- page 72 -- #84i
i

i
i

i
i

i
i

72 Appendix A Topics

83 counterfactual
84 implicature
85 turing machine
86 proposition
87 compactness
88 truth conditional semantics
89 frame
90 abstraction
91 partial logic
92 domain
93 discourse representation theory
94 ambda calculus
95 semantics
96 movement
97 bisimulation
98 filter
99 many-valued logic
100 denotational semantics
101 database
102 dynamic semantics
103 sense
104 undecidability
105 ptq
106 context dependence
107 categorial grammar
108 language acquisition
109 bound variable
110 belief revision
111 hierarchy
112 assignment
113 lexical semantics
114 standard translation
115 demonstrative
116 satisfaction
117 decidability
118 homomorphism
119 relation
120 montague grammar
121 belief
122 classification
123 normalization
124 extensionality

“scriptie” — 2004/4/22 — 9:59 — page 73 — #85i
i

i
i

i
i

i
i

Section 2 AutomaticHyperlinking Topics 73

125 coordination
126 boolean algebra
127 higher-order logic
128 feature structure
129 reference
130 situation calculus
131 independence
132 type theory
133 context change
134 abstract model theory
135 expressive power
136 aspect
137 application
138 attitude
139 synonymy
140 individual concept
141 nonmonotonic reasoning
142 negation
143 truth

“scriptie” — 2004/4/22 — 9:59 — page 74 — #86i
i

i
i

i
i

i
i

74 Appendix A Topics

“scriptie” — 2004/4/22 — 9:59 — page 75 — #87i
i

i
i

i
i

i
i

Bibliography

S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: from relations to
semistructured data and XML. Morgan Kaufmann, 1999.

Altavista. Altavista, 1995.
URL: http://www.altavista.com .

G. Amati, C. Carpineto, and G. Romano. Query diYculty, robustness and selective
application of query expansion. In Proceedings of the European Conference on
Information Retrieval, 2004.

G. Antoniou and F. van Harmelen. A Semantic Web Primer. MIT Press, 2004.

X Baeza-Yates and N. Ribeiro-Neto. Modern Information Retrieval. ACM Press,
1999.

A. Barabasi, R. Albert, and H. Jeong. Mean-field theory for scale-free random
networks. In Physica A 272, 1999.

N.J. et al. Belkin. Query length in interactive information retrieval. In Proceedings
of SIGIR, 2003.

T. Berners-Lee. the World Wide Web Consortium, 1994.
URL: http://www.w3.org/ .

C. Buckley and E.M. Voorhees. Evaluating evaluation measure stability, 2000.

C Caracciolo, M de Rijke, and J Kircz. Towards scientific information disclosure
through concept hierarchies. In Proceedings of the 6th International ICCC/IFIP
Conference on Electronic Publishing (ELPUB02), 2002.

CLEF. Cross-Language Evaluation Forum, 2003.
URL: http://www.clef-campaign.org/ .

75

“scriptie” — 2004/4/22 — 9:59 — page 76 — #88i
i

i
i

i
i

i
i

76 BIBLIOGRAPHY

M. Cutler, Y. Shih, and W. Meng. Using the structure of HTML documents to
improve retrieval. In Proc. USENIX Symp. Internet Technologies and Systems,
1997.

P. DuBois. MySQL: The definitive guide to using, programming, and administering
MySQL 4. Sams Publishing, 2003.

D. Harman. Overview of the trec 2002 novelty track. In TREC, 2002.

V. Hollink, J. Kamps, C. Monz, and M. de Rijke. Monolingual document retrieval
for european languages. Information Retrieval, pages 33–52, 2004.

D. Hull. Evaluating evaluation measure stability. In Proceedings of SIGIR 2000,
2000.

INEX. INitiative for the Evaluation of XML Retrieval, 2004.
URL: http://inex.is.informatik.uni-duisburg.de:2004/ .

B.J. Jansen. An investigation into the use of simple queries on web ir systems.
Information Research: An Electronic Journal, 6(1), 2000.

V. Jijkoun, J. Kamps, G. Mischne, and M. de Rijke. The university of amsterdam
at trec 2003. In TREC, 2003.

J.S. Justeson and S.M. Katz. Technical terminology: some linguistic properties and
an algorithm for identification in text., 1995.

J. Kamps, M. Marx, M. de Rijke, and B. Sigurbjörnsson. Xml retrieval: What to
retrieve. In Proceedings of SIGIR, 2003.

G. Kazai, M. Lalmas, and A.P. de Vries. The overlap problem in content-oriented
xml retrieval evaluation. In Proceedings of SIGIR, 2004.

G Kazai, M Lalmas, and T Roelleke. Focussed structured document retrieval. In
Proceedings of the 9th International String Processing and Information Retrieval
Symposium, SPIRE, 2002.

D.E. Knuth. The Art of Computer Programming. Four volumes. Addison-Wesley,
1968. Seven volumes planned.

B. Krenn and S. Evert. Can we do better than frequency? a case study on extracting
pp-verb collocations. In Proceedings of the ACL Workshop on Collocations, 2001.

“scriptie” — 2004/4/22 — 9:59 — page 77 — #89i
i

i
i

i
i

i
i

BIBLIOGRAPHY 77

K.L. Kwok, L. Grunfeld, M. Chan, and N. Dinstl. Trec-7 ad-hoc, high precision
and filtering experiments using pircs. In Proceedings of TREC-7, 2000.

M. Li and P. Vítanyi. An Introduction to Kolmogorov Complexity and Its Applica-
tions. Springer, 1997.

C.D. Manning and H. Schütze. Foundations of statistical language processing. The
MIT Press, 1999.

J. Mayfield and T. Finin. Information retrieval on the Semantic Web: Integrating
inference and retrieval. In Proc. SIGIR 2003 Semantic Web Workshop, 2003.

G. Mishne. Source code retrieval using conceptual graphs. Master’s thesis, Uni-
versiteit van Amsterdam, 2004.

C.Monz. From Document Retrieval to Question Answering. PhD thesis, Universiteit
van Amsterdam, 2003.

C. Monz and M. de Rijke. Tequesta: The university of amsterdam’s textual ques-
tion answering system. In TREC, 2001.

C. Monz, M. de Rijke, J. Kamps, W. van Hage, and V. Hollink. The FlexIR infor-
mation retrieval system. Manual, Language & Inference Technology Group, U.
of Amsterdam, 2002a.

C. Monz, J. Kamps, and M. de Rijke. The university of amsterdam at trec 2002. In
TREC, 2002b.

Netscape. The Open Directory Project, dmoz, 1998.
URL: http://dmoz.org/ .

K. Olsen. Digital Equipment Corporation, 1957.
URL: http://en.wikipedia.org/wiki/
Digital_Equipment_Corporation .

R Pohlmann and W Kraaij. The eVect of syntactic phrase indexing on retrieval
performance for dutch texts, 1997.

M.F. Porter. An algorithm for suYx stripping. Program, pages 130–137, 1980.
URL: http://www.tartarus.org/ m̃artin/PorterStemmer/ .

S.E. Robertson, S Walker, S Jones, and M.M. Hancock-Beaulieu. Okapi at trec-3.
In Proceedings of TREC-3, 1996.

“scriptie” — 2004/4/22 — 9:59 — page 78 — #90i
i

i
i

i
i

i
i

78 BIBLIOGRAPHY

G. Salton and M.J. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill, 1983.

L. Schamber. Relevance and information behavior. Annual Review of Information
Science and Technology, pages 3–48, 1994.

H. Schmid. Probabilistic part-of-speech tagging using decision trees. In Proceed-
ings of International Conference on New Methods in Language Processing, 1994.

U. Shah, T. Finin, A. Joshi, R.S. Cost, and J. Mayfield. Information retrieval on the
semantic web. In Proc. CIKM 2002, 2002a.

U Shah, T Finin, and JMayfield. Information retrieval on the semantic web, 2002b.

C.E. Shannon. The mathematical theory of communication. Bell System Technol-
ogy Journal, 1948.

K. Spärck Jones. Automatic indexing. Journal of Documentation, pages 393–432,
1979.

the World Wide Web Consortium. HTML, 1992.
URL: http://www.w3.org/MarkUp .

TREC. Text REtrieval Conference, 2003.
URL: http://trec.nist.gov/ .

J. van Benthem and A. ter Meulen, editors. Handbook of Logic and Language.
Elsevier, 1997.

C.J. van Rijsbergen. Information Retrieval. Butterworths, 1979.

E. Voorhees. Using wordnet to disambiguate word senses for text retrieval. In
Proceedings of the 16th annual international ACM SIGIR conference on research
and development in information retrieval, 1993.

E.M. Voorhees and C. Buckley. The eVect of topic set size on retrieval experiment
error. In SIGIR, 2002.

E.M. Voorhees and D. Harman. Overview of the ninth text retrieval conference
(trec-9). In Proceedings of TREC-9, 2002.

I.H. Witten, A. MoVat, and T.C. Bell. Managing Gigabytes: Compressing and in-
dexing documents and images. Morgan Kaufmann, 1999.

“scriptie” — 2004/4/22 — 9:59 — page 79 — #91i
i

i
i

i
i

i
i

BIBLIOGRAPHY 79

J. Xu and W.B. Croft. Query expansion using local and global document analysis.
In SIGIR, 1996.

Yahoo! Inc. Yahoo! Directory, 1995.
URL: http://www.yahoo.com/ .

G.K. Zipf. Human Behaviour and the Principle of Least EVort: An introduction to
Human Ecology. Addison-Wesley, 1949.

